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Abstract

In the thesis we study codimension p algebraic cycles on a 2p-dimensional non-

singular projective variety X defined over an uncountable algebraically closed

ground field k of characteristic 0. The main result (Theorem 4.7.1 in the thesis)

says that, under some weak representability assumptions on the continuous parts

of the Chow groups of the variety X and its nonsingular hyperplane sections Y ,

the kernel of the Gysin homomorphism from the codimension p Chow group of

the very general Y to the codimension p+ 1 Chow group of X is countable. As

an application, we obtain the following concrete result. Let X be a nonsingular

cubic hypersurface in P5 over k. Then, for a very general Y , there exists a count-

able set Ξ of closed points on the Prym variety of the threefold Y , such that,

if Σ and Σ′ are two linear combinations of lines of the same degree on Y , the

one-cycle Σ is rationally equivalent to the one-cycle Σ′ on X if and only if the

difference Σ − Σ′, as a point of the Prymian, is an element of Ξ. These results

first appeared in the joint preprint [4]. In the thesis we give a detailed exposition

of the arguments and methods presented in loc.cit.
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Chapter 1

Introduction

In algebraic geometry, an algebraic cycle is a linear combination of closed irre-

ducible subvarieties in a given ambient variety X over a field. The coefficients in

an algebraic cycle are called multiplicities, which allow to define cycle-theoretic

intersections of algebraic cycles inside X. The irreducible components of the set-

theoretic intersection of prime cycles are endowed with multiplicities coming up

as orders of zeros or poles of the rational functions relevant to this intersection.

Given two algebraic cycles A and A′, we say that A is rationally equivalent to

A′ if there exists a positive algebraic cycle Z on the product of X × P1 and a

big enough positive algebraic cycle B on X, such that the cycle-theoretic inter-

sections Z(0) and Z(∞) of Z with the fibres over two fundamental points on P1

coincide with the positive cycles A+B and A′ +B on X. In other words, A+B

can be cycle-theoretically deformed to A′ +B along the cycle Z.

Rational equivalence of algebraic cycles is a fundamental property encoding

many important phenomena in algebraic geometry and arithmetic. It is well

understood in codimension 1. The classical Abel-Jacobi theorem says that if

X is a curve then the algebraic cycles of degree 0 on X are parametrized by

an abelian variety, called the Jacobian variety of the curve X. The study of

subvarieties of codimension 1 modulo rational equivalence in higher dimension

has been completed in the mid of 20th century by proving the existence of Picard

schemes extending the Abel-Jacobi theorem for curves (Grothedieck, Altman-

Kleiman and others). In contrast, rational equivalence of algebraic cycles in

codimension 2 and higher still remains a mystery in algebraic geometry. As we

go deep inside X, i.e. as codimension of subvarieties is increasing, the rational

equivalence is getting to be more difficult to understand. This happens already

in the case of 0-dimensional cycles on algebraic surfaces. The celebrated Bloch’s

conjecture says that if the geometric genus of a smooth projective complex surface

is 0 then the Albanese kernel of X is also trivial, i.e. 0-dimensional cycles modulo

rational equivalence on X can be parametrized by the Albanese variety of X,

similarly to the Abel-Jacobi theorem for curves. This conjecture was easily proved

for surfaces of Kodaira dimension < 2 (Bloch-Kas-Lieberman) but if X is of
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general type the problem is solved only in few cases (Barlow, Inose-Mizukami,

Kimura, Voisin).

Rational equivalence is also important in birational geometry. Recall that

birational classification of projective surfaces in characteristic zero has been com-

pleted by the classical Italian geometers (Enriques and others) and by Bombieri

and Mumford in positive characteristic. The next problem was to understand

the Lüroth problem in dimension 3. This problem turned out to be difficult and,

after many years since it was stated, it has been successfully resolved by Clemens

and Griffiths in [9] and also by Iskovskih and Manin [38]. Roughly speaking, the

method of Clemens and Griffiths is as follows. First we look at the continuous

part A2(X) of the Chow group of codimension 2 algebraic cycles modulo rational

equivalence on a nonsingular cubic threefold X in P4 and interpret it as the Grif-

fiths’ intermediate Jacobian J2(X) of X. Then observe that J2(X) can contain

Jacobians of curves only if X is rational. Finally, analyze the theta-divisor on the

principally polarized abelian variety J2(X) to show that there is no Jacobians of

curves inside it. Thus, the Clemens-Griffiths method is rooted in rational equiva-

lence of codimension 2 algebraic cycles on the threefold X, which were interpreted

in terms of the intermediate jacobian J2(X). Iskovskih and Manin worked out

the counterexample to the Lüroth problem in the case of quartic threefolds. Due

to Mumford’s theory of Prym varieties, the analytical arguments can be avoided

and irrationality of a nonsingular cubic threefold can be proven over an arbi-

trary ground field of characteristic not 2 or 3, see [26]. The work of Voisin [43] ,

Colliot-Theléné and Pirutka [3] is also relevant in this regard.

The above example shows that rational equivalence for algebraic cycles of in-

termediate codimension can be important in approaching difficult conjectures in

birational algebraic geometry, such as the conjecture on non-rationality of a non-

singular cubic fourfold in P5. The problem is, however, that rational equivalence

of algebraic cycles of intermediate codimension on high dimensional varieties is

not yet well understood. For example, it is well known that each dimension 1

algebraic cycle on a nonsingular cubic hypersurface in P5 is rationally equivalent

to a linear combination of lines, see [27] and [33]. Yet it seems to be difficult to

give a satisfactory answer to the question whether two combinations of lines are

rationally equivalent one to another. The purpose of our thesis is to approach a

question of this kind via the monodromy argument, essentially used in [40], [41]

and more recently in [42]1.

To us Proposition 2.4 in [42] is the departing point. In a nutshell, it means the

following. Take for instance a nonsingular projective surface X over C, embed it

into a projective space and consider a smooth hyperplane section Y of X . For

simplicity, assume that X is regular, that is the local ring of every closed point of

X is regular. Then Voisin’s result tells us that, if Y is very general, the kernel of

1see also other papers by C. Voisin
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the push-forward homomorphism from the Jacobian J of Y to the Chow-group

of zero-cycles on X is either the whole Jacobian J or a countable subset in it.

And the same phenomena is true for zero-cycles supported on a dimension one

linear section of a nonsingular projective variety of arbitrary dimension, loc.cit.

In this thesis we address the following questions, in that regard: can one extend

Voisin’s method to algebraic cycles of codimension p + 1 supported on a very

general hyperplane section of a nonsingular projective variety of dimension 2p,

and can we avoid analytic arguments working over an arbitrary uncountable field

of characteristic zero?

The thesis is based on the joint work with V. Guletskii, [4], and represents

a detailed exposition of the results and arguments given there. The first two

chapters in the thesis aim to give basics on algebraic cycles and introduce the

reader into the subtle phenomena relevant to étale monodromy and étale Picard-

Lefschetz formula. There is nothing new in the first two chapters, and the reader

is advised to read them only in case of necessity. The new results are coming in

Chapter 4, and we give a brief synopsis of it here.

In Section 1 of Chapter 4 we generalize the well-known Mumford-Roitman

countability result, [28], to algebraic cycles of arbitrary codimension. In Section

4.2 we prove that, for a proper morphism r from one nonsingular projective

variety Y to another nonsingular projective variety X, such that codimension p

algebraic cycles on Y are represented by an abelian variety, say A, the kernel of

the corresponding push-forward homomorphism r∗ on Chow groups is a countable

union of shifts of an abelian subvariety A0 in A. In Section 4.4 we study weak

representability of continuous parts of codimension p Chow groups in a family. In

particular, we explain there the connection between the geometric generic fibre of

a family and its very general geometric fibre, in the context of the above abelian

variety A0. In Chapter 4.5 we first consider the case when Y is the geometric

generic fibre of a Lefschetz pencil of a nonsingular variety X embedded into a

projective space Pm, and X is the product of X and the geometric generic point

of the base. Being inspired by Voisin’s analytic monodromy argument over C, we
apply the absolute irreducibility of the étale monodromy action and prove that

either A0 is zero or it is A1 (if H2p+1(X ) vanishes then A1 = A), here A1 is the

abelian variety that arises from the non-vanishing of H2p+1(X ), containing A0.

Then, using non-canonical scheme-theoretic isomorphisms between the geometric

generic fibre and the very general geometric fibre, we expand the above alternative

to all very general fibres for the family of hyperplane sections of X . Using this,

and assuming H2p+1(X ) = 0, we obtain (Theorem 4.5.2) that, for a very general

hyperplane section Y , the kernel of the push-forward homomorphism from Ap(Y )

to Ap+1(X ) is either a countable set, or the whole group Ap(Y ). Notice that

the assumption H2p+1(X ) = 0 is not essential and can be eliminated at low

cost. The main result is Theorem 4.7.1 which says that if, moreover, the group

Ap+1(Yξ̄) is weakly representable and the group Ap+1(X ) is not rationally weakly
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representable, then for a very general Y , the kernel of the homomorphism from

Ap(Y ) to Ap+1(X ) is countable.

In the last section we apply the main Theorem 4.7.1 to the case when X is a

nonsingular cubic in P5. As a concrete application, we obtain the result for cubic

fourfold hypersurfaces described in the abstract of the thesis above. Namely,

let X be a nonsingular cubic hypersurface in P5 over k. The ground field k is

uncountable, algebraically closed of characteristic zero (for example, C or the

algebraic closure of Qp, for a prime p). Recall that A3(X ) is generated by lines,

see [33]. For any nonsingular hyperplane section Y of the fourfold X let P be

the Prym variety of the threefold Y . Then, for a very general Y , there exists a

countable set Ξ of closed points on the principally polarized abelian variety P,

such that, if Σ and Σ′ are two linear combinations of lines of the same degree on

Y , the one-cycle Σ is rationally equivalent to the one-cycle Σ′ on X if and only

if the difference Σ− Σ′, as a point of the Prymian P, is an element of Ξ.
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Chapter 2

Algebraic cycles

The purpose of this chapter is to recall some needed facts in intersection theory

which we use without making references throughout the text. The material below

is an elaboration of the first chapter in [13] (using also [18]). Action of correspon-

dences and weak representability is borrowed from [8]. To make the exposition

more lucid we provide numerous examples illustrating general principals of the

theory. As in [13], a scheme is always an algebraic scheme, i.e. of finite type over

a field, unless it is a spectrum of a local ring at a point. A variety is a reduced and

irreducible scheme. A subvariety is a closed sub-scheme of a variety which itself

is a variety. A point on a variety is a closed point, unless otherwise specified.

2.1 Rational equivalence

Let k be an algebraically closed field of characteristic zero. Consider a variety

X that is regular in codimension one, that is the local ring OX,V of each integral

closed subscheme V of codimension one is regular. Now we fix V , let A denote

the local ring OX,V which is an integral domain. Since A is a regular ring it is a

DVR. Since the field of rational functions R(X) is the fraction field to A, we get

a discrete valuation

ordV : R(X)∗ → Z ,

for any a ∈ A, ordV (a) is nothing but the length of the ring A/(a) considered as a

module over A. For any rational function f on X, the value ordV (f) is non-zero

only for finitely many codimension one integral closed subscheme V of X. Let

U = Spec(A) be an affine open set on which f is regular. Then the complement

X r U can be contain only a finite collection of codimension one integral closed

subschemes in X and therefore we can ignore it. Now for each V such that V ∩U
is non-empty the value ordV ∩U(f) is non-negative and it is positive precisely when

V ∩ U is a closed subset of Z(f) of zeros of f on U . But Z(f) can only have a

finite number of codimension one integral closed sub-schemes in X.

An algebraic n-cycle on an algebraic scheme X is an element of the free

abelian group Zn(X) generated by integral closed subschemes of dimension n on
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X. We can give the reduced induced subscheme structure on each irreducible

closed subset of X. This gives a 1-1 correspondence between integral closed

subschemes in X and irreducible closed subsets in X in the Zariski topology. So

it is meaningful to say that Zn(X) is generated by closed irreducible subsets of

dimension n in X. We will write Z∗(X) for ⊕Zn(X).

Take an n+ 1 dimensional integral closed subscheme W of X and consider a

rational function f in R(W )∗, then we define divisor div(f) associated to f to be

the n-cycle ∑
ordV (f)V

this is well defined as there are only finitely many V such that ordV (f) is non-zero.

Two n-dimensional cycles α and α′ are said to be rationally equivalent on X

if there exists finitely many n + 1 dimensional integral closed subschemes Wi of

X and non-zero rational functions fi on Wi such that

α− α′ =
∑

div(fi) .

Now for any two non-zero rational functions f, g on X we have that

div(fg) = div(f) + div(g)

this is because ordV is a homomorphism of groups.

Thus, the cycles rationally equivalent to zero form a subgroup of Zn(X). We

denote this subgroup by Ratn(X). The quotient group

CH n(X) = Zn(X)/Ratn(X)

is called the Chow group of n-dimensional algebraic cycles modulo rational equiv-

alence. Elements of the Chow group CH n(X) can be called as cycles classes on

X. The following lemma is useful for understanding the nature of Chow groups.

Lemma 2.1.1. Let X be a smooth variety over an algebraically closed field k and

let Y be any variety over k. Let K = k(Y ) be the function field on Y and let

XK be the scheme obtained by field extension from k to K. Then CH n(XK) is

isomorphic to the colimit of the Chow groups CH n(X×k U) over all Zariski open
subsets U in Y .

Proof. See pages 21 - 22 in [7].

Later on we will give another equivalent definition of rational equivalence on

algebraic cycles, which will shed more geometrical light on this important notion.

But to do that we need to study how algebraic cycles behave with regard to

morphisms of algebraic varieties over a field.
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2.2 Proper push-forward and flat pull-back

Let X be a an algebraic scheme. Let X1, · · · , Xn be the irreducible topological

components of X. Since for a scheme X, every irreducible closed subset has a

unique generic point, we denote by ξi the generic points of the irreducible closed

sets Xi. Since Xi is not contained in any larger closed irreducible subset of X,

we get that the local rings OX,ξi are zero dimensional, that the supremum of

the length of chain of prime ideals is zero. Since OX,ξi is zero dimensional and

also Noetherian, it is of finite length. The length of OX,ξi is called the geometric

multiplicity of X along Xi, and it is denoted by mi. The fundamental cycle of X

is then

[X] =
∑

miXi

as an element of Z∗(X). If all the irreducible components of X have the same

dimension d, then we have that [X] is an element of Zd(X). Observe that for an

integral scheme V the local ring OV,ξ, the stalk at the generic point ξ of V , is a

field. Therefore it is of dimension one, hence the fundamental cycle [V ] is just V .

Now we define the notion of proper push-forward and flat pullback of algebraic

cycles.

Consider f : X → Y a proper morphism between two schemes. By definition

it follows that f is separated and universally closed, so we if we consider a base

change of f , then it takes closed subsets into closed subsets. Let V be an integral

closed subscheme in X. Then it follows that W = f(V ) is an integral closed

subscheme in Y , and we have the an embedding f ∗ induced by f of k(W ) into

k(V ), which is a finite extension if the dimension of V and W are the same

[17, 5.5.6]. Now set, deg(V/W ) = [k(V ) : k(W )] if dim(W ) = dim(V ) and

deg(V/W ) = 0 otherwise, where [k(V ) : k(W )] denotes the degree of the field

extension, then we define

f∗[V ] = deg(V/W )[W ] .

This extends linearly to a homomorphism

f∗ : Zn(X)→ Zn(Y ) .

If g : Y → Z is another proper morphism then we have that

(g ◦ f)∗ = g∗ ◦ f∗ .

Consider the following example showing that the requirement of separated-

ness is essential here.

Example 2.2.1. Let P be a closed point on P1, and let U = P1r{P}. Consider
X to be a scheme constructed by pasting of two copies of P1 along the open subset

U , and let i1 : P1 → X and i2 : P1 → X be the corresponding embeddings. By
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definition of glueing of two schemes, a subset Y in X is open in X if and only if

i−1
1 (Y ) is open in P1 and i−1

2 (Y ) is open in P1. Using this and the fact that X is

a closure of the image of U in X, it is easy to show that X is integral. Now we

identify U with A1 and consider a rational function r on X defined by the single

coordinate in U . Let P1 = i1(P ), P2 = i2(P ) and P0 be the image of the origin of

coordinates under the embedding of U into X, then ordP1(r) = ordP2(r) = −1,
ordP0(r) = 1 and ordQ(r) = 0 for any other point Q on X. So it follows that

div(r) = P0 − P1 − P2

and further P1 + P2 is rationally equivalent to P0 on X. On the other hand,

f∗(P1 + P2) = 2 is not rationally equivalent to f∗(P0) = 1 on Spec(k).

Now let us recall the definition of a flat morphism between two schemes. A

morphism f : X → Y is said to be flat if for each point x ∈ X the local ring OX,x

is a flat OY,y module. Let us consider a flat morphism f from a scheme X to

another scheme Y of relative dimension n. Let for a d-dimensional integral closed

subscheme V of Y , f−1(V ) be the fibred product of X and V over Y . Then we

can define the pull-back homomorphism associated to f putting

f ∗[V ] = [f−1(V )] ,

and we extend f ∗ by linearity on the whole Zd(Y ). Since V is an integral closed

subscheme and f is a flat morphism of relative dimension n, it follows that f−1(V )

is a closed subscheme of X of dimension d+ n. So we obtain a homomorphism

f ∗ : Zd(Y )→ Zd+n(X) .

We now head towards proving some fundamental properties of push-forwarding

and pulling back. First we will prove a few useful lemma. The first one will be ele-

mentary topological, the other one is concerned about flat morphisms of schemes.

For any subset S of a topological space X let S̄ denote the closure of S in X.

LetW be an irreducible component of X, and let V be the topological closure

f(W ) of f(W ) in Y . Then V is an irreducible component of Y . On the other hand,

if we suppose that V is an irreducible component of Y , such that f−1(V ) ̸= ∅,
then there exists an irreducible component W of X with f(W ) = V . Using this,

one can show that for any closed subscheme Z of Y

f ∗([Z]) = [f−1(Z)] ,

where [Z] and [f−1(Z)] are the fundamental classes of the schemes Z and f−1(Z)

respectively, see [13], Lemma 1.7.1.

Let now

X ′

f ′

��

g′ // X

f

��
Y ′ g // Y
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be a Cartesian square of schemes over a field, and assume that g is flat and f is

proper. As flatness and properness is stable under base change, g′ is flat and f ′

is proper too. Then

f ′
∗g

′∗ = g∗f∗

is the equality of two homomorphisms from Z∗(X) into Z∗(Y
′), see Proposition

1.7 on page 18 in [13]. This property of proper push-forward and flat pull-back

is essential, and will be used in the text without special references.

Next, the fact that flat pull-backs preserve rational equivalence is more or less

straightforward. Preserving rational equivalence by proper push-forwards is less

evident, and we give a detail proof of this property below. The reasoning will be

a detailed elaboration of the proof of Proposition 1.4 on pages 12 - 13 in Fulton’s

book [13], borrowed from [18].

First recall that if E/L is a finite field extension then we have a multiplicative

homomorphism

NE/L : E∗ → L∗

sending any element α ∈ E∗ to the determinant det(ψα), where ψα : E → E is

the L-linear operator of the finite-dimensional vector space E over L sending any

element β ∈ E to the product αβ. A detailed exposition of norms can be found

in [29].

Proposition 2.2.2. Let f : X → Y be a proper surjective morphism of integral

schemes over a field, so we have the induced embedding of R(Y ) into R(X). Let

r ∈ R(X)∗ and consider the principal divisor div(r) of the rational function r as

an element in Z 1(X). Then

f∗(div(r)) = div(NR(X)/R(Y )(r))

if X and Y are of the same dimension, and

f∗(div(r)) = 0

otherwise.

Proof. Consider first the case when dim(X) = dim(Y ). Suppose that f is finite.

Therefore it is quasi-finite. Let V be an integral closed subscheme of codimension

one in Y , let W1, · · · ,Wn are integral closed subschemes of X of codimension 1

such that f(Wi) = V .

To prove the required formula

f∗(div(r)) = div(N(r))

we have to prove that∑
i

ordWi
(r)[R(Wi) : R(V )] = ordV (N(r)) .

9



This is because of the following. Suppose we take an r, a non-zero rational

function on X, then consider the div(r). It can be expressed in the form
∑

i niWi,

applying f∗ we get that

f∗[div(r)] = f∗

[∑
ordWi

(r)Wi

]
=
∑

ordWi
(r)[R(Wi) : R(f(Wi))]f(Wi)

this sum can be decomposed in the following way, we collect all Wi’s such that

f(Wi) = V . Then we get∑
Wi

∑
f(Wi)=V

ordWi
(r)[R(Wi) : R(V )]V

to prove that this is equal to

div(N(r))

we have to prove that

ordV (N(r)) =
∑

ordWi
(r)[R(Wi) : R(V )] .

Let η be the generic point of the closed integral subscheme V in Y . Since f is

finite it is affine. So for any affine neighborhood N = Spec(A) of η the pre-image

f−1(N) is affine, denote it by Spec(B). Since f is finite, we have that B is a

finitely generated A-module. Let p be the prime ideal in A corresponding to the

subscheme V ∩ N , also let q1, · · · , qn be the prime ideals in B corresponding to

the subschemes W1 ∩M, · · · ,Wn ∩M . Now the ring

Bp = Ap ⊗B

is a domain and also it is finitely generated over Ap since B is finitely generated

over A. The field of fraction of Ap is R(Y ), since the field of fraction of B is R(X)

we get that the field of fraction for Bp is R(X). Corresponding to q1, · · · , qn in

B we have the prime ideals

qe1, · · · , qen
in Bp. The localisation Bp at qei is nothing but Bqi . Let r be in Bp. Let r also

denote the multiplication by r in Bp. By lemma A.2.2 in [13] we get that

eAp(r,Bp) =
∑

eAp(r, Bpqei
) =

∑
eAp(r, Bqi) .

By the lemma A.2.3 in [13]

eAp(r, Bqi) = di.eBqi
(r, Bqi)

where di is the degree [R(Wi) : R(V )]. Since V,W1, · · · ,Wn are integral we have

Ap, Bqi ’s are all domains. Therefore we have

eBqi
(r, Bqi) = l(Bqi/rBqi) = ordWi

(r) .
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By lemma A.3 in [13] we have

eAp(r,Bp) = ordAp(det(ψr)) = ordV (N(r))

here ψr is the multiplication by r, which is an automorphism of R(X) over R(Y ).

Collecting all the above equalities we get that∑
ordWi

(r)[R(Wi) : R(V )] =
∑

eAp(r, Bqi) = eAp(r,Bp) = ordV (N(r)) .

In the general case when f is not finite, we use the fact that if we have a

proper surjective morphism f : X → Y of varieties then f factors through a

morphism g : Y ′ → Y , g is finite and f ′ : X → Y ′ has connected fibers. If

dimension X is equal to dimension of Y then there is an open set inside X which

maps isomorphically onto an open subset of Y ′ [[16], 4.3.1, 4.4.2]. Let U be the

open set which is mapped isomorphically to f ′(U). Since any subvariety V of U

extends to V̄ of X, it is enough to prove that

f∗([div(r̄)]) = div(N(r̄))

where r̄ is the rational function on U , corresponding to the rational function r

in k(X), this always exists since for any non-empty open set U of X, k(U) is

isomorphic to k(X). To prove the result in U it is enough to consider it on f ′(U).

Since f ′ is an isomorphism on U . But g is finite on f ′(U) so we are reduced to

the case of finite maps as above.

Now we consider the case dim(Y ) < dim(X). Start with Y = Spec(k) and

X = P1
k. Then k(X) is k(t) where t is x1

x0
. Since the order functions are homo-

morphisms, we can take r to be an irreducible polynomial of degree d inside k[t].

Let P be the prime ideal generated by the polynomial r. Since r belongs to P ,

we have,

ordP (r) = 1 .

Also since r is a polynomial in x1
x0

it can be written as,

r =
a0x

d
1 + a1x

d−1
1 x0 + · · ·+ adx

d
0

xd0
.

Therefore r has non-zero order along prime ideal defined by the point P∞ =

(0 : 1). The prime ideal at this point is generated by 1/t. So the uniformizing

parameter at the point infinity is s = 1/t. Then multiplying r with sd we have,

rsd =

(
a0x

d
1 + a1x

d−1
1 x0 + · · ·+ adx

d
0

xd0

)(
xd0
xd1

)
,

which is

= a0 +
a1x0
x1

+ · · ·+ adx
d
0

xd1
,
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and it does not belong to the ideal generated by s = 1/t = x0/x1, therefore rs
d

is a unit at the point P∞. Hence we have,

ordP∞(rsd) = 0 ,

since order is a homomorphism we get that,

ordP∞(r) = −ordP∞(sd) = −d .

Therefore we obtain,

[div(r)] = [P ]− d[P∞] .

Now we have k(P ) isomorphic to k[t]/P , since P is generated by r, which is a

polynomial of degree d,

k[t]/P ,

is a degree d finite extension of the field k. Also we have,

k(P∞) = k ,

as P∞ is a k-rational point. Therefore we get,

f∗[div(r)] = f∗[P ]− f∗[dP∞] ,

which is same as,

[k(P ) : k][Y ]− d[Y ] = d[Y ]− d[Y ] = 0 .

If we have dimY is less than dimX−1 then for any co-dimension one integral

subscheme V in X we have dim(f(V )) is less than dim(V ), so by the definition of

proper push-forward we get f∗([V ]) is zero. This is why it is enough to consider

the case when

dimY = dimX − 1 .

Let η be the generic point of Y and we consider the following Cartesian square.

Xη

f ′

��

g′ // X

f

��
η

g // Y

The morphism g′ is flat as it is a base change of the flat morphism

g : η → Y .

The pull-back g′∗ is defined as follows. Let W be a closed integral subscheme of

X of codimension one. Let ξ be the generic point of W . Then since f is proper
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and surjective we can prove that f(ξ) = η. Take any open set V of Y . Consider

f−1(V ), it is an open set in X, therefore f−1(V ) ∩W will contain ξ, as it is the

generic point of W . Then f(ξ) will be contained in V , therefore we get that f(ξ)

is the generic point of Y . Since generic point is unique we get that f(ξ) = η.

Now we define

g′∗[W ] = ξ .

One can verify that

Z 1(Xη)

f ′∗

��

Z 1(X)
g′∗oo

f∗

��
Z 0(η) Z 0(Y )

g∗oo

is commutative. Observe that g∗ is an isomorphism of groups, each of them are

isomorphic to Z. Therefore we get that

f∗(div(r)) = 0

if and only if

g∗(f∗(div(r))) = 0 ,

which is same as showing

f ′
∗g

′∗(div(r)) = 0 .

Since the map f is surjective there exists a point χ in X such that f(χ) is equal to

η. Now suppose that χ is not a generic point of X, then there exists an open set

U such that U does not contain χ. Therefore we get that f(U) does not contain η.

Since f is proper and surjective and U open it follows that f(U) is open. Hence

we get that η does not belong to the open set f(U), which is a contradiction to

the fact that η is a generic point. Therefore χ is the generic point on X which is

mapped to η. Consequently we get that χ is in Xη and hence Xη is dense in X,

therefore the functions fields R(X) and R(Xη) are the same and hence X,Xη are

birationally equivalent. Moreover we have

g′∗(div(r)) = div(r)

where the first div(r) is a principal divisor on X and the second one is a principal

divisor on Xη. Then we get that

f ′
∗g

′∗(div(r)) = f ′
∗(div(r)) .

Therefore f∗(div(r)) = 0 if and only if f ′
∗(div(r)) = 0 here div(r) is a principal

divisor on Xη. Therefore we are reduced to the case Xη → η, and without loss of

generality we can assume that Y = Spec(k) and X is a curve over Y . Now choose
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a normalisation h : X̃ → X of the curve X. Let us take the map h : X̃ → X and

choose a finite map g : X̃ → P1
K , let p be the structural morphism from P1

K to

Spec(K). Since Spec(K) is just one point we obtain that

X̃

g

��

h // X

f

��
P1 p // Spec(k)

whence p◦g = f ◦h. Let r̃ be the image of r under the isomorphism k(X) ∼= k(X̃).

Now div(r) is equal to h∗(div(r̃)) this follows from the fact that

ordV (r) =
∑

ordṼ (r̃)[k(Ṽ ) : k(V )]

now

div(r) =
∑

ordV (r)V

replace

ordV (r) =
∑

ordṼ (r̃)[k(Ṽ ) : k(V )]

then we get ∑
V

∑
h(Ṽ=V )

∑
ordṼ (r̃)[k(Ṽ ) : k(V )]

the above is

h∗([div(r̃)])

and is equal to div(r). Since

f∗ ◦ h∗(div(r̃)) = p∗ ◦ g∗(div(r̃))

since p is from P1
K to SpecK, we get that

p∗[g∗(div(r̃))] = 0 .

The proposition is proved.

2.3 Second definition of rational equivalence

Let X be a scheme over a field k, and take V be an n + 1-dimensional integral

closed subscheme in X × P1, that is dominant over P1, so we have that the

composition f of the closed embedding

V → X × P1
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with the projection

q : X × P1 → P1

is dominant. Let

P : Spec(k)→ P1

be a k-rational point on P1, that lies in the image of f , and let f−1(P ) be the

scheme-theoretic fibre of the morphism

f : V → P1

over P . Let X × {P} be the scheme-theoretic pre-image of the point P with

respect to the projection q. Now f is defined as the composition of the closed

embedding

V → X × P1

with the projection q, so we have the induced closed embedding of the fibre f−1(P )

into the fibre X × {P}. Observe that the latest fibre is naturally isomorphic to

the scheme X, so we get the closed embedding

f−1(P )→ X .

To emphasize the fact that f−1(P ) is closely embedded into V and into X respec-

tively at the same time, we denote by V (P ) the scheme f−1(P ) being embedded

into X, and let f−1(P ) denote the scheme-theoretical pre-image embedded into

V . Clearly, V (P ) is an n-dimensional cycle on X.

As above, we make a choice of the system of coordinates in P1 in a way, such

that the points (0 : 1) and (1 : 0) are both in the image of f . Then f gives us a

non-zero rational function rf on V , such that

[div(rf )] = [f−1(0)]− [f−1(∞)] .

Let

g : V → X

denote the composition of the closed embedding

V → X × P1

with the projection

p : X × P1 → X .

It is easy to verify that the latest equality implies the equality

[V (0)]− [V (∞)] = g∗[div(rf )]

in Zn(X).

Now we can prove the following proposition bringing new understanding of

rational equivalence of algebraic cycles. The proof below is borrowed from [13]

and [18].

15



Proposition 2.3.1. Given an algebraic cycle A ∈ Zn(X), it is rationally equiv-

alent to zero if and only if there exist a finite collection of n + 1-dimensional

varieties V1, . . . , Vm in X × P1, each of which is dominant over P1, such that,

after appropriate choice of coordinates in P1, one has

A =
m∑
i=1

([Vi(0)]− [Vi(∞)])

in Zn(X).

Proof. Let A be a cycle in Zn(X) such that

A =
∑
i

[Vi(0)]− [Vi(∞)]

for some n+ 1 dimensional subvarieties V1, · · · , Vm of X × P1, each of the above

mentioned subvarieties is dominant over P1. We know that

[Vi(0)]− [Vi(∞)] = gi∗[div(rfi)]

where gi, fi’s are constructed as above. By proposition 2.2.2 it follows that, each

of the algebraic cycles gi∗[div(rfi)] is either zero or the principle divisor of the

norm. So we have, in both cases it is rationally equivalent to zero.

Conversely let us consider A in Zn(X), a cycle rationally equivalent to zero.

We have to show that A can be expressed as a sum∑
i

[Vi(0)]− [Vi(∞)] .

Without loss of generality take A to be of the form

[div(r)]

for some rational function r in R(W ), for some n + 1 dimensional subvariety W

in X. Let

f : W 99K P1

be the rational morphism induced by the rational function r. Let U be the open

set in W where f is regular. Then the morphism

f : U → P1 .

is regular. Let Γ be the scheme theoretical image of the composition

c : U → U × P1 → W × P1 → X × P1 .

The first morphism in the above is constructed as follows. We have the following

morphisms

id : U → U
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and

f : U → P1

then by the universal property of the fiber product we have a morphism from

U to U × P1. Let V = Γred be the reduction of Γ, which is a closed integral

subscheme of X × P1. We observe that the underlying topological space |V | of
the scheme V is the closure of the graph of the morphism

f : U → P1 .

Observe that the composition of c with the projection

X × P1 → X

is the same as composition of

U → W

and

W → X ,

therefore the universal properties of the scheme theoretical image and the mor-

phism

V → Γ

gives the morphism

h : V → W

such that the following square

V

h

��

// X × P1

��
W // X

commutes. This is because of the following. We have a morphism from V to Γ.

Also we have a morphism from U to Γ, so by the universal property of V there

exist a morphism V → U and composing this with U → W we get the morphism

V → W .

Since the diagram

U

��

// X × P1

��
W // X
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is commutative we get that

V

h

��

// X × P1

��
W // X

is commutative.

It follows that h is proper, as it is a composition of proper morphisms and it

is surjective . Now the morphism

f : U → P1

is dominant, therefore the composition of the closed embedding

V → X × P1

with the projection

X × P1 → P1

is dominant. We consider U as an open subset of V , then the morphism

f : U → P1

gives a rational function rf in R(V )∗. We know that

g∗[div(rf )] = [V (0)]− [V (∞)]

where g is the composition of the closed embedding of V into X × P1 and the

projection X × P1 → X. Since h maps V to W bi-rationally we have that

h∗(div(rf )) = div(NR(V )/R(W )(r)) = div(r)

by proposition 2.2.2. Then we get

A = div(r) = h∗(div(rf )) = g∗(div(rf )) = [V (0)]− [V (∞)]

the middle equality follows from the commutativity of the diagram

V

h

��

// X × P1

��
W // X

This completes the proof.
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2.4 Weak representability of algebraic cycles

This section is devoted to recall and to discuss the notion of intersection product of

two algebraic cycles, correspondences, the weak representability for Chow groups

and the Weil cohomology theory of algebraic varieties defined over an algebraically

closed field k. For simplicity, we keep assuming that the characteristic of the

ground field is zero. This is enough for proving the results of the thesis.

Lets start with the definition of intersection product. Let k be a field and

let X be a non-singular, irreducible, projective variety defined over Spec(k). Let

V and W be irreducible subvarieties in X of codimension i and j respectively.

Then we write V ∩W as a finite union ∪lZl of irreducible subvarieties Zl ⊂ X.

Suppose that the intersection of V,W at Zl is proper, that is the codimension of

Zl is i + j for all l. In that case we define the intersection multiplicity of V and

W at Zl as in [19], page 427. We denote this intersection multiplicity by

i(V ·W ;Zl) .

Now define the intersection product of V and W as

V ·W =
∑
l

i(V ·W ;Zl)Zl ,

where in the above formula Zl stands for the algebraic cycle defined by the irre-

ducible subvariety Zl of X.

Now lets define the notion of correspondences between smooth, projective,

irreducible algebraic varieties over spectrum of a field k. Let X and Y be two

smooth projective irreducible varieties over Spec(k). Let X be of dimension d. A

correspondence

T ∈ Corr(X,Y )

from X to Y is an element of the Chow group CH n(X × Y ) for some n ≥ 0.

That is we have Corr(X,Y ) equals CH ∗(X × Y ), where CH ∗(X × Y ) denotes

the Chow ring of X × Y , where the ring structure is induced by the intersection

product defined above. Let T t denote the transpose of T , which is an element of

Corr(Y,X).

Given a correspondence T in CH n(X × Y ) we define the homomorphism

T∗ : CH
i(X)→ CH i+n−d(Y )

given by the formula

T (Z) = (prY )∗(T · (Z × Y ))

but we can only define the above homomorphism, for those T in CH ∗(X × Y )

such that the intersection product T · (Z × Y ) is defined on X × Y , that is the

intersection of the irreducible components of the supports of T and Z × Y is
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proper. Given two correspondences f from X to Y and g from Y to Z, we can

also define their composition given by

g ◦ f = (pr13)∗(pr
∗
12f · pr∗23g)

where prij denotes the projection from X × Y × Z to the corresponding factor.

For details on correspondences see [32] or [20].

Now let us recall the definition of algebraic equivalence of algebraic cycles on

a scheme X over Spec(k). An algebraic cycle A of dimension n on X is said to be

algebraically equivalent to zero if there exists an algebraic curve C, an algebraic

cycle T of dimension n+ 1 on X × C, and two points a, b on C such that

A = T (b)− T (a)

where T (a) is defined to be

prX∗(T.pr
∗
C(a))

for any point a in C.

With this definition of correspondence we are ready to define the notion of

weak representability for Chow groups as it appears in [8]. Let X denote a

smooth projective variety defined over an algebraically closed field k and let

Ai(X) denote the subgroup of elements of the Chow group of codimension i,

which are algebraically equivalent to zero. Now let us consider an overfield K as

defined in [8], that is K is an increasing union of rings Rα such that Spec(Rα) is

smooth and of finite type over Spec(k) and let

CH i(XK) = lim−→
α

CH i(X ×Spec(k) Spec(Rα))

and respectively

Ai(XK) = lim−→
α

Ai(X ×Spec(k) Spec(Rα)) .

Now we turn to the definition of weak representability. The group Ai(X)

is called weakly representable if there exists a smooth projective curve Γ, an

algebraic cycle T supported on Γ×X, and an algebraic subgroupB of the Jacobian

variety J(Γ) of Γ, such that the sequence

0→ B(K)→ J(Γ)(K)
T∗−→ Ai(XK)→ 0

is exact for all K = K̄ ⊃ k. Here B(K), J(Γ)(K) are the groups of K points

on B and J(Γ) respectively. Since the Jacobian variety J(Γ) is isomorphic to

the group A1(Γ), we have a homomorphism T∗ from A1(ΓK) to A
i(XK) induced

by the correspondence T . Also the above exact sequence means that for any

K̄ = K ⊃ k we have the isomorphism

Ai(XK) ∼= (J(Γ)/B)(K) .
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Proposition 2.4.1. Let Ai(V ) be weakly representable by a triple (Γ, T, B). Let

W be a smooth variety and Z be a codimension i algebraic cycle supported on

W × V . Consider the map (after the choice of a base point w0 ∈ W ):

Z∗ : W → Ai(V )

defined by w 7→ [Z(w)]−[Z(w0)]. Then there exists a subvariety Ω inW×J(Γ)/B
defined over k such that

Ω = {(w,Z∗(w)) : w ∈ W (K)}

for all K = K̄ ⊃ k.

Proof. See [8], Proposition 3.4.

Proposition 2.4.2. Let V,W be smooth projective varieties. Let f : V → W

be a proper morphism that is generically finite of degree d. Then the weak repre-

sentability of Ai(V ) implies the weak representability of Ai(W ).

Proof. For the proof, see[8], Proposition 3.10.

Proposition 2.4.3. Let V be a smooth projective variety and let Z ⊂ V be a

smooth subvariety of V . Consider W that is obtained by blowing up V along Z.

Then weak representability of A2(V ) implies the weak representability of A2(W )

Proof. See [8], Proposition 3.11.

Assuming the resolution of singularities in dimension ≤ n we have the follow-

ing corollary of the above proposition.

Corollary 2.4.4. Under the above assumption, the weak representability of A2(V )

is a birational invariant for varieties of dimension ≤ n.

Proof. This follows from the previous proposition 2.4.3.

Corollary 2.4.5. Let π : V 99K S be a proper surjective rational morphism with

dim(V ) = 3, dim(S) = 2. Assume that for the geometric generic fibre we have an

isomorphism

Vη
∼→ P1

η ,

and that A2(S) is weakly representable. Then A2(V ) is also weakly representable.

Proof. See [8], Proposition 3.16.

Weak representability of A2 has several nice properties proven in [8].

We will also use the notion of rational weak representability, see [14]. Let V

be a smooth projective variety over k. The group

AiQ(V ) = Ai(V )⊗Z Q
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is said to be rationally weakly representable if there exists a smooth projective

curve Γ over k and a cycle class Z in CH i
Q(Γ × V ) = CH i(Γ × V ) ⊗Z Q, such

that for any algebraically closed field Ω containing k the homomorphism Z∗ in-

duced by z from A1
Q(ΓΩ) to A

i
Q(VΩ) is surjective. In other words, rational weak

representability is weak representability with coefficients in Q.
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Chapter 3

Étale monodromy

3.1 Étale site and étale sheaves

In this section we recall basics on étale sheaves and corresponding sheaf cohomol-

ogy groups, and consider some examples important for what follows in the next

section. Throughout the chapter all schemes will be separated.

Recall that a morphism f : X → Y is called locally finitely presented if for

each x in X there are affine open neighborhoods V of y = f(x) and U of x such

that f(U) ⊂ V and the Γ(V,OY ) algebra Γ(U,OX) is finitely presented. Let us

recall the notion of a finitely presented algebra over a ring R. Let A be an R

algebra, A is said to be finitely presented if A is isomorphic to a quotient of a

polynomial ring in finitely many variables over R by a finitely generated ideal.

A morphism f : X → Y is said to be flat if for each point x ∈ X the local ring

OX,x is a flat OY,y module. A locally finitely presented morphism f : X → Y is

called étale if it is flat and unramified.

Étale morphisms possess the following nice properties. Open immersions are

étale. If f : X → Y and g : Y → Z are étale, then so is the composite g ◦ f . If

f : X → X ′ and g : Y → Y ′ are étale S-morphisms, for a third scheme S, then

so is their fibred product

f ×S g : X ×S Y → X ′ ×S Y ′

over S. Let f : X → Y and g : Y → Z be morphisms of schemes such that g ◦ f
and g are étale. Then f is étale. This all can be found in Section 17.3.3 in [17].

Let X be a scheme. We consider the category Et/X of étale X-schemes. By

the previous properties, Et/X has finite fiber products and X is a final object of

Et/X. A family of morphisms

{X ′
i

ϕi→ X ′}

is called surjective in Et/X if

X ′ = ∪iϕi(X ′
i) .
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Now we check that the set of all surjective morphisms in Et/X satisfies axioms

of being covering of a Grothendieck topology (see [37] for the axioms).

Indeed, let

{Ui
ϕi→ U}

be a surjective family of morphisms in Et/X and let f : V → U be a morphism

in Et/X. Then we have to check that

{Ui ×U V
ϕi×Uf→ V }

is a surjective family of morphisms. Since {Ui
ϕi→ U} is a surjective family we get

that ∪iϕi(Ui) = U . Then it follows by the definition of fiber product that

f−1(U) = ∪i(ϕi ×U f)(Ui ×U V ) .

But f−1(U) = V , so we get that the first axiom of a Grothendieck topology is

satisfied.

Other axioms are straightforward.

Thus, we can now define the étale site Xét of X by setting the category being

Et/X and coverings being the set of surjective families of morphisms in Et/X.

A presheaf F of sets on Xét is a sheaf, if for each covering {X ′
i → X ′} in Xét the

sequence

F (X ′)→
∏
i

F (X ′
i) ⇒

∏
i,j

F (X ′
i ×′

X X
′
j)

is exact. The category of set valued sheaves on Xét is also called the étale topos

on X. Sheaves of abelian groups are called abelian sheaves. The category of

abelian sheaves on Xét is denoted by X̃ét. For each abelian sheaf F in X̃ét and for

each scheme X ′ étale over X the cohomology groups Hq
ét(X

′, F ) are defined and

they are denoted by Hq
ét(X

′, F ). They can be understood as derived functors of

global sections of sheaves on Xét and computed as Cech cohomology groups, see

[37].

Let us now consider examples of étale sheaves. First of all, the étale topology

is subcanonical, i.e. all representable presheaves are sheaves. By a representable

sheaf we mean a representable pre-sheaf which is a sheaf. A representable pre-

sheaf is a contravarinat functor from Xét to the category of sets, that is naturally

isomorphic to HomX(−, A) for an object A in Xét. Let G be a group scheme over

X. Then we denote by GX the sheaf on Xét represented by G. This is a sheaf of

groups on Xét. For each étale X-scheme X ′ we have GX(X
′) = HomX(X

′, G) -

the group of points of G with values in X ′. If G is a commutative group scheme

then GX is an abelian sheaf in X̃ét.

Example 3.1.1. Let Ga = Spec(Z[t])×Spec(Z) X, and for an etale scheme X ′ we

obtain that

(Ga)X(X
′) = HomX(X

′, Spec(Z[t])×Spec(Z) X)
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which is same as

HomX(X
′, Spec(Z[t]))

that is nothing but

Hom(Z[t],Γ(X ′,O ′
X))

Now we prove that the above is isomorphic to Γ(X ′,O ′
X). Let us define

Φ : Hom(Z[t],Γ(X ′,O ′
X))→ Γ(X ′,O ′

X)

by

Φ(f) = f(t)

on the other hand define

Ψ : Γ(X ′,O ′
X)→ Hom(Z[t],Γ(X ′,O ′

X))

by

Ψ(a) = ga

where ga is defined as follows

ga(t) : t 7→ a .

Now we prove that Φ and Ψ are inverses to each other, on one hand we have

Φ(Ψ(a)) = Φ(ga) = ga(t) = a

and on the other we have

Ψ(Φ(f)) = Ψ(f(t)) = gf(t)

but

gf(t)(t) = f(t)

therefore we have

gf(t) = f .

Therefore we get that

Hom(Z[t],Γ(X ′,O ′
X))
∼= Γ(X ′,O ′

X) .

Therefore we have

(Ga)X(X
′) ∼= Γ(X ′,O ′

X) .

Example 3.1.2. Let us consider Gm = Spec(Z[t, t−1] ×Spec(Z) X). Then for an

etale X-scheme X ′ we have

(Gm)X(X
′) = HomX(X

′, Spec(Z[t, t−1]×Spec(Z) X))
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which is same as

HomX(X
′, Spec(Z[t, t−1]))

that is isomorphic to

Hom(Z[t, t−1],Γ(X ′,O ′
X)) .

Now we show that

Hom(Z[t, t−1],Γ(X ′,O ′
X)) .

is isomorphic to Γ(X ′,O ′
X)

∗ as multiplicative groups. Let us define

Φ : Hom(Z[t, t−1],Γ(X ′,O ′
X))→ Γ(X ′,O ′

X)
∗

by

Φ(f) = f(t)

since t · t−1 = 1 and f is a multiplicative homomorphism from Z[t, t−1] to

Γ(X ′,O ′
X) we have

f(t) · f(t−1) = 1

hence f(t) belongs to Γ(X ′,O ′
X) on the other hand define

Ψ : Γ(X ′,O ′
X)

∗ → Hom(Z[t, t−1],Γ(X ′,O ′
X))

by sending a to ga, where ga(t) = a and ga(t
−1) = a−1. Since ga(t) · ga(t−1) =

a · a−1 = 1 we get that

ga(t · t−1) = ga(t) · ga(t−1) .

So ga is a multiplicative homomorphism from Hom(Spec(Z[t, t−1]),Γ(X ′,OX′)).

As in the previous example Ψ and Φ are inverses of each other. So we get that

(Gm)X(X
′) ∼= Γ(X ′,O ′

X)
∗ .

Example 3.1.3. Let us consider µn = Spec(Z[t]/(tn − 1) ×SpecZ X) and for an

étale X-scheme X ′ we have

(µn)X(X
′) = HomX(X

′, Spec(Z[t]/(tn − 1)×SpecZ X))

that is same as

HomX(X
′, Spec(Z[t]/(tn − 1)))

which is isomorphic to

Hom(Z[t]/(tn − 1),Γ(X ′,O ′
X))

we claim that this isomorphic to

A = {s ∈ Γ(X ′,O ′
X) : s

n = 1} .
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Let us define the map

Φ : Hom(Z[t]/(tn − 1),Γ(X ′,O ′
X))→ Γ(X ′,O ′

X)

by

f 7→ f(t)

since tn = 1 in Z[t]/(tn − 1) we have f(t)n = 1 therefore f(t) belongs to A. Let

a ∈ A be given then a defines the homomorphism from

Z[t]→ Γ(X ′,O ′
X)

by the rule

t 7→ a

and extending it to whole of Z[t] such that it is a homomorphism. Since an = 1,

this homomorphism gives rise to a unique homomorphism

ga : Z[t]/(tn − 1)→ Γ(X ′,OX′)

and define

Ψ : A→ Hom(Z[t]/(tn − 1),Γ(X ′,OX′))

by

Ψ(a) = ga

as in the previous two examples we can show that Φ,Ψ are inverses to each other.

Therefore we get that,

(µn)X(X
′) ∼= {s ∈ Γ(X ′,O ′

X) : s
n = 1} .

For each natural number n we have the following exact sequence of abelian

sheaves on Xét:

0→ (µn)X → (Gm)X
n−→ (Gm)X

where

(Gm)X
n−→ (Gm)X

denotes the n-th power morphism

s 7→ sn .

Let A be a discrete abelian group. We denote by AX the sheaf which is

associated to the presheaf sending X ′ to A, for an étale X-schemes X ′. Then

AX is called the constant sheaf with values in A. We have that AX(X
′) is the

coproduct of the copies of A over the connected components of X ′, and it is equal

to HomX(X
′,
⨿

AX). This means that the constant sheaf AX is represented by

the étale group scheme
⨿

AX with the group structure induced by A. If F is

an arbitrary sheaf on Xét then for each morphism A → F (X) induces a unique
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natural morphism of sheaves AX → F , by the universal property of a sheaf

associated to a presheaf. This gives an isomorphism between Hom(A,F (X)) and

Hom(AX , F ).

Now, consider the constant sheaf (Z/nZ)X on Xét. The morphisms (Z/nZ)X
to an abelian sheaf F , correspond to the morphisms Z/nZ to F (X), which cor-

respond uniquely to those sections of F over X which are annihilated by n.

Therefore the isomorphisms (Z/nZ)X ∼= (µn)X corresponds uniquely to the prim-

itive n-th roots of unity on X, hence to those sections of (µn)X over X which

have order precisely n on each connected component of X. In particular we see

that (µn)X is isomorphic to (Z/nZ)X if there exists at least one primitive n-th

root of unity on X.

Next, there is a canonical isomorphism

H1
ét(X, (Gm)X) ∼= Pic(X)

where Pic(X) denotes the Picard group of X, that is the group of isomorphism

classes of all invertible sheaves on X, see [37]. For any natural number n we have

the n-th power morphism

(Gm)X
n−→ (Gm)X

given by

s 7→ sn

for s in Γ(X,OX)
∗. If n is invertible on X, meaning that n is prime to character-

istic of k(x) for all x in X, then there is an exact sequence

0→ (µn)X → (Gm)X
n−→ (Gm)X → 0 ,

which yields the following long exact sequence.

0→ H0
ét(X, (µn)X)→ H0(X,O∗

X)→ H0(X,O∗
X)

→ H1
ét(X, (µn)X)→ Pic(X)

n−→ Pic(X)→ · · ·

It gives the exact sequence

0→ H0(X,O∗
X)/nH

0(X,O∗
X)→ H1

ét(X, (µn)X)→

ker(Pic(X)
n−→ Pic(X))→ 0 .

If X is a spectrum of a local ring A and n is invertible in A then we have

H1
ét(X, (µn)X)

∼= A∗/A∗n ,

because the kernel of the multiplication by n on Pic(X) is zero in this case.

Let X be reduced proper scheme over a separable closed field k and let char-

acteristic of k is prime to n. Then we have the well-known isomorphism

H1
ét(X, (µn)X)

∼= ker(Pic(X)
n−→ Pic(X)) ,

see [37].
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3.2 l-adic étale cohomology groups

Now we are ready to introduce l-adic étale cohomology and show that it is a Weil

cohomology theory. Recall that a Weil cohomology theory with coefficients in a

characteristic zero field K is given by the following data. First of all, we have a

contravariant functor X → H∗(X) = ⊕iH i(X) from the category of nonsingular

(connected) projective varieties over Spec(k) to graded commutative K-algebras.

The product of α and β in H∗(X) is denoted by α ∪ β. For every nonsingular

projective X there must exist a linear trace map Tr = TrX : H2 dim(X)(X)→ K.

For every closed irreducible subvariety Z of codimension c in X, there is given a

cohomology class cl(Z) in H2c(X). The above data should satisfy the following

set of 8 axioms.

(A1) For every non-singular, connected, projective variety X, all H i(X) have

finite dimension over K. Furthermore, H i(X) = 0 unless 0 ≤ i ≤ 2 dim(X).

(A2) (Künneth property) If X and Y are non-singular, connected, projective

algebraic varieties and

pX : X × Y → X

pY : X × Y → Y

are the canonical projections then the K-algebra homomorphism

H∗(X)⊗K H∗(Y )→ H∗(X × Y )

given by

α⊗ β 7→ p∗X(α) ∪ p∗Y (β)

is an isomorphism.

(A3) (Poincaré duality) For every non-singular, connected projective algebraic

variety X the trace map Tr : H2 dim(X)(X)→ K is an isomorphism and for

every i between 0 and 2 dim(X) the bilinear map

H i(X)⊗K H2 dim(X)−i(X)→ K

given by

α⊗ β 7→ TrX(α ∪ β)

is a perfect pairing, that is the linear map fromH i(X) to HomK(H
2 dim(X)−i(X), K)

induced by the above bilinear map is an isomorphism.

(A4) (Trace maps and products) For every non-singular, connected, projective

varieties X,Y we have

TrX×Y (p
∗
X(α) ∪ p∗Y (β)) = TrX(α)TrY (β)

for all α in H2 dim(X)(X) and β in H2 dim(Y )(Y ).
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(A5) (Exterior product of cohomology classes) For every non-singular, connected

projective varieties X,Y and every closed irreducible subvarieties Z ⊂ X

and W ⊂ Y we have

cl(Z ×W ) = p∗X(cl(Z)) ∪ p∗Y (cl(W )) .

Here we assume that Z ×W is a closed subscheme of X × Y .

(A6) (Push forward of cohomology classes) For every morphism f : X → Y of

non-singular, connected, projective varieties and for every irreducible closed

subvariety Z of X we have for every α in H2 dim(Z)(Y )

TrX(cl(Z) ∪ f ∗(α)) = deg(Z/f(Z)) · TrY (cl(f(Z)) ∪ α) .

(A7) (Pull-back of cohomology classes) Let f : X → Y be a morphism of non-

singular, connected, projective varieties and Z ⊂ Y an irreducible closed

subvariety that satisfies the following considitions.

(a) All irreducible componentsW1, · · · ,Wr of f
−1(Z) have pure codimeni-

son dim(Z) + dim(X)− dim(Y ).

(b) Either f is flat in a neighborhood of Z or Z is generically transverse

to f in the sense that f−1(Z) is generically smooth. Here f−1(Z) is

the scheme theoretic inverse image of Z under the morphism f . That

is consider the fibred product of Z and X over Y .

f−1(Z)

��

// X

��
Z // Y

Under these above assumptions if

[f−1(Z)] =
r∑
i=1

miWi

where [f−1(Z)] denote the fundamental cycle of f−1(Z), then

f ∗(cl(Z)) =
r∑
i=1

micl(Wi) .

(A8) (Case of a point) If x = Spec(k) then cl(x) = 1 and Trx(1) = 1.
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For further details on Weil cohomology theories and for a discussion on the

famous standard conjectures see [21].

A basic example of a Weil cohomology theory is given by singular cohomol-

ogy when k = C, when we may take K = Q. In our thesis we will be working

over an arbitrary (uncountable) ground field k and also over function fields of

varieties over k, so that singular cohomology is not suitable. It was a discov-

ery of Grothendieck that l-adic étale cohomology groups, which we are going to

introduce right now, form a Weil cohomology theory with coefficients in Ql for

varieties over an arbitrary ground field k.

So, let k be an algebraically closed field and let l be a prime that is different

from the characteristic of k. Now consider the étale topology on Spec(k). Then

consider X to be a scheme étale over Spec(k). Let Z/lmZ denote the constant

sheaf given by the ring Z/lmZ. Consider i-th cohomology group H i
ét(X,Z/lmZ)

with values in the constant sheaf Z/lmZ. Now we have natural homomorphism

from Z/lm+1Z to Z/lmZ. This gives us a morphism of constant sheaves, from

Z/lm+1Z to Z/lmZ and hence we obtain a morphism

H i
ét(X,Z/lm+1Z)→ H i

ét(X,Z/lmZ)

so the groups {H i
ét(X,Z/lmZ)}m forms an inverse system and we put

H i
ét(X,Zl) := lim←−

m

H i
ét(X,Z/lmZ) ,

where Zl is the ring of l-adic integers. Since for each m the cohomology group

H i
ét(X,Z/lmZ) is a Z/lmZ module we have that, H i

ét(X,Zl) carries a natural

structure of a Zl module. Now one defines

H i
ét(X,Ql) = H i

ét(X,Zl)⊗Zl
Ql .

It is an important point to note that taking cohomology does not commute with

inverse limits, therefore H i
ét(X,Zl) is not the étale cohomology group of X with

coefficients in the constant sheaf Zl. It follows from the fundamental theorems

on étale cohomology that when we take the l-adic cohomology groups of smooth,

connected, projective varieties over k, one gets a Weil cohomology theory with

coefficients in Ql, for details see [21].

Now recall that a étale sheaf F on a scheme X is called locally constant

when there is an étale covering Ui → X such that F |Ui
is constant. An étale

sheaf F on a scheme X is said to be constructible if we can write X as a union of

finitely many locally closed subschemes Y ⊂ X such that F |Y is locally constant.

A projective system (Fn)n of étale sheaves on X is called an l-adic sheaf if all

sheaves Fn are constructible, Fn = 0 for all n < 0, ln+1Fn = 0 for all n ≥ 0, and

Fn+1 ⊗Z/ln+1Z Z/lnZ = Fn+1/l
n+1 ∼= Fn .
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Let Λn be the ring Z/nZ. For any ring R, such that n is a unit in the ring

we define µn(R) to be the group of n-th roots of unity in R. We define µn(R)
⊗r

to be the tensor product of µn(R) with itself for r-times if r is an integer greater

than 0, it is equal to Λn if r is zero, and it is equal to

HomΛn(µn(R)
⊗−r,Λn)

if r is an integer less than zero. Now let X be a variety over a field k whose

characteristic does not divide n, we then define Λn(r) to be the sheaf on Xét such

that

Γ(U,Λn(r)) = µn(Γ(U,OU))
⊗r

for all U → X étale. It is important to note that if k is algebraically closed then

it contains an n-th root of 1, and then each sheaf is isomorphic to the constant

sheaf Λn, and the choice of a primitive n-th root of unity determines isomorphisms

Λn(r) ∼= Λn. Now consider the inverse system of sheaves Λn(r) where r is a non-

negative integer and let us denote the inverse limit of this inverse system as

Zl(r). Sheafify this Zl(r) and consider the tensor product with the constant sheaf

given by Ql, that is denoted as Ql(r). We can now consider the cohomology

H i
ét(X,Ql(r)) defined by the formula

H i
ét(X,Ql(r)) = H i

ét(X,Zl(r))⊗Zl
Ql .

It should be understood as cohomology with coefficients in Ql(r).

Now let us give an outline of why the l-adic cohomology with Ql coefficients

is a Weil cohomology theory. The description below is borrowed from [23]. Let

Λ = Z/lnZ. For complete varieties X and Y there is an isomorphism

⊕r+s=nHr
ét(X,Λ)⊗Λ H

s
ét(Y,Λ)

∼= Hn(X × Y,Λ) ,

loc.cit. Passing to the inverse limit lim←−n Z/l
nZ we get the isomorphism

⊕r+s=nHr
ét(X,Zl)⊗Zl

Hs
ét(Y,Zl) ∼= Hn(X × Y,Zl) .

Tensoring with Ql, we get the Künneth formula for étale cohomology with Ql

coefficients.

Suppose now X is an irreducible nonsingular algebraic variety and let Z be a

subvariety of X. The Gysin homomorphism is the composition

Λ = H0
ét(Z,Λ)→ H2r

ét,Z(X,Λ(r))→ H2r
ét (X,Λ(r))

where H2r
ét,Z(X,Λ(r)) denotes the cohomology of the pair (X,Z) (see [23] for

cohomology of pairs). Now the cycle class clX(Z) is the image of 1 under the

Gysin homomorphism, when Z is non-singular.

We can also extend this definition of the cycle class map to the case when Z

is singular. Let Z be an irreducible subvariety of X of codimension c and let Y
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be the singular locus of Z. Now we have an exact sequence of étale cohomology

groups for the triple

(X,X r Y,X r Z)

using this exact sequence and the fact that for any closed subvariety Z of codi-

mension c in X, Hr
ét(X,Λ) = 0 for r < 2c we get that there is an isomorphism

H2c
ét,Z(X,Λ)

∼= H2c
ét,ZrY (X r Y,Λ) .

We define clX(Z) to be the image of 1 under the composition of maps

Λ ∼= H0
ét,ZrY (X r Y,Λ(c)) ∼= H2c

ét,Z(X,Λ(c))→ H2c
ét (X,Λ(c))

we extend this by linearity to a homomorphism to the free abelian group generated

by the irreducible subvarieties of X.

Now let us discuss the Poincaré duality axiom. For a sheaf of Λ modules F

let us set

F̌ (m) = Hom(F ,Λ(m))

where Λ(m) = µ⊗m
n , and µn is the sheaf of n-th roots of unity, that

µn(X) = ker(O∗
X

n→ O∗
X)

Now the Poincaré duality axiom requires that for any non-singular algebraic vari-

ety of dimension d over an algebraically closed field k there is a unique map TrX
from H2d

ét (X,Λ(d)) to Λ sending cl(P ) to 1 for any closed point on X and it is

an isomorphism, this map TrX is called the trace map. Moreover for any locally

constant sheaf F of Λ modules there are canonical pairings

Hr
ét(X,F )×H2d−r

ét (X, F̌ (d))→ H2d(X,Λ(d)) ∼= Λ

which are perfect pairings of finite groups. If X is quasi-projective then the above

cohomologies can be identified with the Cech cohomology groups and the pairing

can be defined by the usual cup-product formula. Now if we use the Poincaré

duality theorem for the case when F is the constant sheaf given by Z/lnZ and

we consider the inverse limit of the cohomology groups with coefficients in the

constant sheaf given by Z/lnZ, we get the validity of the Poincaré duality axiom

for the l-adic cohomology.

Finally, we will need to see how the Gysin map arises from Poincaré duality.

Let π : Y −→ X be a proper morphism of smooth connected separated varieties

over an algebraically closed field k. Let a = dim(X), d = dim(Y ), e = d− a, then
there is a restriction map

π∗ : H2d−r
ét (X,Λ(d))→ H2d−r

ét (Y,Λ(d))

by the duality we get the map

π∗ : H
r
ét(Y,Λ)→ Hr−2e(X,Λ(−e)) .
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It is a fact that when π is a closed immersion then π∗ is the Gysin map that we

have discussed above. This is a consequence of the proof of the Poincaré duality.

In particular for a subvariety Y inside X we have

π∗(1) = clX(Y )

where 1 is the unity of H0
ét(Y,Λ).

3.3 Étale fundamental group

The key technique used in the thesis is étale monodromy. We discuss this impor-

tant notion in the remaining three sections of this chapter. We begin with some

notations and terminologies. For a scheme S let FS denote the category whose

objects are finite, étale covers of S and morphisms are morphisms of schemes over

S. Let Ω be an algebraically closed field. Let

s : Spec(Ω)→ S

be a geometric point. For an object X → S in FS we consider the geometric fiber

X ×S Spec(Ω) over s. We denote by Fs(X) the underlying set of X ×S Spec(Ω).
Let f : X → Y be a morphism between two schemes in FS, then we get a

morphism

X ×S Spec(Ω)→ Y ×S Spec(Ω)

therefore we get a set theoretic map

Fs(X)→ Fs(Y ) .

We call it the fiber functor at the geometric point of s. Now let us recall the

notion of a natural transformation of functors from a category C1 to another C2.

Let F,G be two functors from C1 to C2. Then a morphism f between F and G

is a collection of morphisms in C2

f(X) : F (X)→ G(X)

one for each object X in C1 such that for any morphism

ϕ : X → Y

we have that,

F (X)

F (ϕ)

��

f(X) // G(X)

G(ϕ)

��
F (Y )

f(Y ) // G(Y )
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Now given a functor F from a category C1 to C2 an automorphism F is a mor-

phism of functors

F → F

that has a two sided inverse. Let Aut(F ) be the collection of all automorphisms of

F . Now a composition of two automorphisms is again an automorphism, making

Aut(F ) into a group, this is called the automorphism group of F . Note that for

all ϕ in Aut(F ) and for an object C in C1, we have an automorphism

ϕ(C) : F (C)→ F (C)

therefore if F is set valued then Aut(F ) acts on F (C) for all C in C1. Let us now

recall the definition of the étale fundamental group as in [15].

Given a scheme S and a geometric point

s : Spec(Ω)→ S

we define the étale fundamental group π1(S, s) as the automorphism group of the

fiber functor Fs.

Since Fs is set valued there is a natural left action of π1(S, s) on Fs(X) for

each X in FS.

Theorem 3.3.1. Let S be a connected scheme and let

s : Spec(Ω)→ S

be a geometric point.

(1) The group π1(S, s) is a profinite group and its action on Fs(X) is continuous

for every X in FS.

(2) The functor Fs defines an equivalence of categories between FS and the

category of left π1(S, s)-sets.

The proof of the theorem will be given later. Let us now consider the following

definition.

Let C be a category and F a set valued functor on C . We say that F is

pro-representable if there exists an inverse system P = (Pα, ϕαβ) of objects in C

indexed by a directed partially ordered set Λ and a functorial isomorphism

lim−→Hom(Pα, X) ∼= F (X) .

Since (Pα, ϕαβ) forms an inverse system we have that Hom(Pα, X) forms a

direct system indexed by the same indexing set Λ. Recall that by definition the

direct limit of a direct system (Sα, ϕαβ) of sets is the disjoint union of Sα modulo

the following equivalence relation, where sα in Sα is equivalent to sβ in Sβ, if and

only if there exists γ ≥ α, β such that

ϕαγ(sα) = ϕβγ(sβ) .

35



Remark 3.3.2. If F is pro-representable by an inverse system (Pα, ϕαβ) then for

each α we have the identity map of Pα which is an element of Hom(Pα, Pα), hence

gives a class in

lim−→Hom(Pβ, Pα) ∼= F (Pα) .

Proposition 3.3.3. Let S be a connected scheme and let

s : Spec(Ω)→ S

be a geometric point, then the functor Fs is pro-representable.

Proof. Take the index set Λ to be the set of all finite étale Galois covers Pα → S.

Define Pα ≤ Pβ if there is a morphism

Pβ → Pα .

This partially ordered set is directed because if Pα, Pβ are given then by the

following lemma applied to a connected component Z of Pα ×S Pβ we obtain Pγ
with maps

Pγ → Z → Pα

Pγ → Z → Pβ .

The lemma is as follows.

Lemma 3.3.4. Let ϕ : X → S be a connected finite étale cover. Then there is a

morphism π : P → X such that

ϕ ◦ π : P → S

is a finite étale Galois cover and moreover any S-morphism from a Galois cover

to S, factors through π.

Proof. For a proof see [36] proposition 5.3.9.

Now the objects of the inverse system are Pα themselves. Now the next we have

to define the morphisms ϕαβ. Now for each Pα fix an element pα in Fs(Pα). Now

we now that Pβ → S is Galois therefore the automorphism group Aut(Pβ|S) acts
transitively on geometric fibers. Since we have morphism ϕ : Pβ → Pα we get a

morphism

Fs(ϕ) : Fs(Pβ)→ Fs(Pα)

consider the set

Fs(ϕ)
−1(pα)

take an element in this inverse image say p′α. Since Aut(Pβ|S) acts transitively

on the geometric fiber there is a λ in Aut(Pβ|S) such that

λ(pβ) = p′α
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this λ is unique. Because if we have two λ1, λ2 such that

λ1(pβ) = λ2(pβ)

then we have λ1 = λ2 by the following lemma.

Lemma 3.3.5. If Z → S is a connected scheme and let ϕ1, ϕ2 be two S-morphisms

from Z to X where X is a finite étale cover of S. Suppose that for some geometric

point

z : Spec(Ω)→ Z

we have that

ϕ1 ◦ z = ϕ2 ◦ z

then

ϕ1 = ϕ2 .

Proof. See [36] corollary 5.3.3.

Then we have that

ϕ(λ(pβ)) = ϕ(p′α) = pα

and we define

ϕαβ = ϕ ◦ λ

by construction of ϕαβ we have that

Fs(ϕαβ)(pβ) = pα .

Now letX be in FS, and for every Pα in Λ there is a natural map from Hom(Pα, X)

to Fs(X) by sending

ϕ 7→ Fs(ϕ)(pα) .

By using the fact that

Fs(ϕαβ)(pβ) = pα

we have that these maps are compatible with the transition maps ϕαβ in the

inverse system defined by Pα’s and therefore by the universality of the direct

product we have a map from

lim−→Hom(Pα, X)

to Fs(X). Now we find the inverse to this map. To do that we can assume that X

is connected otherwise we can take disjoint unions. Consider the Galois closure

π : P → X which exists by 3.3.4. Here P is one of the Pα such that α belongs

to Λ. Let x be in Fs(X), and consider π−1(x) inside Fs(Pα), take x
′ in π−1(x).

Since the automorphism group Aut(Pα|S) acts transitively on the geometric fiber

Fs(Pα), there exists a λ in Aut(Pα|S) such that

λ(pα) = x′ .
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This λ is unique by 3.3.5. So that we have π ◦ λ sends pα to x. Send x to the

class of π ◦λ in lim−→Hom(Pα, X), this gives the required inverse. This finishes the

proof of 3.3.3.

Definition 3.3.6. An automorphism of the system (Pα, ϕαβ) is a collection of λα
in Aut(Pα|S) such that

ϕαβ ◦ λβ = λα ◦ ϕαβ .

Corollary 3.3.7. Every automorphism of the functor Fs comes from a unique

automorphism of the inverse system (Pα, ϕαβ).

Proof. By definition of an automorphism f of Fs we have that

Fs(Pβ)

Fs(ϕαβ)

��

f(Pβ) // Fs(Pβ)

Fs(ϕαβ)

��
Fs(Pα)

f(Pα) // Fs(Pα)

this gives us that

Fs(ϕαβ) ◦ f(Pα)(pα) = f(Pβ) ◦ Fs(ϕαβ)(pα) = f(Pβ)(pβ)

therefore we have that (f(Pα)(pα))α forms another system of distinguished ele-

ments as in the previous proposition. Since Pα are Galois therefore there exists

a unique λα such that

λα(pα) = f(Pα)(pα) .

This gives by the commutativity of the above diagram an automorphism of the

inverse system (Pα, ϕαβ).

Corollary 3.3.8. The automorphism groups Aut(Pα|S) form an inverse system

whose inverse limit is π1(S, s).

Proof. The inverse system comes from the proposition 5.3.8 in [36] which states

that given a finite Galois cover X → S, there is a one-to-one correspondence

between subgroups of Aut(X|S) and the intermediate covers Z fitting into the

diagram.

X //

��@
@@

@@
@@

@@
@@

@@
@@

@ Z

��
S
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Now if Pα ≤ Pβ, then there is

ϕαβ : Pβ → Pα .

Since Pβ is Galois over S we have the commutative diagram

Pβ //

  A
AA

AA
AA

AA
AA

AA
AA

A
Pα

��
S

and we can realize Pα as a quotient of Pβ by a subgroup H of Aut(Pβ|S). There-
fore there is a surjective map

fαβ : Aut(Pβ|S)→ Aut(Pα|S) .

Now the elements of the inverse limit are those element (λα)α such that

fαβ(λβ) = λα

for all α ≤ β. This gives us the following commutative diagram

Pβ

λβ

��

ϕαβ // Pα

λα

��
Pβ

ϕαβ // Pα

therefore the elements of the inverse limit of the system Aut(Pα|S)op is exactly

the automorphism of Fs by the previous corollary 3.3.7.

Now we come to the proof of 3.3.1. First we state the following corollary from

[36]. For that we need the following result.

Corollary 3.3.9. If ϕ : X → S is a connected finite étale cover, the non-trivial

elements of Aut(X|S) act without fixed points on each geometric fibers, hence

Aut(X|S) is finite.

Proof. For a proof please see [36] corollary 5.3.4.

Now we can give the proof for 3.3.1:

Proof. The group π1(S, s) is the inverse limit of the automorphism groupsAut(Pα|S)
which are finite, therefore the inverse limit is a profinite group.
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Now we come to the proof of the second statement. We first prove the essen-

tial surjectivity. Let E be a finite continuous left π1(S, s) set. Without loss of

generality we can assume that π1(S, s) acts transitively on E. The stabiliser of x

in E, is Hx and we have by the orbit stabiliser theorem

[π1(S, s) : Hx] ∼= E

therefore Hx is of finite index in π1(S, s). Since Hx is close and of finite index

in π1(S, s) we have that Hx is open and therefore contains a open normal Vα
subgroup which is the kernel of the homomorphism

π1(S, s)→ Aut(Pα|S)

since Vα’s form a basis of open neighborhoods of 1 in π1(S, s). Let H be the

image of Hx inside Aut(Pα|S). Let us consider the the quotient X = Pα/H now

we have to prove that Fs(Pα/H) is isomorphic to E. Now consider Aut(Pα|S),
then we prove that

Aut(Pα|S)/H ∼= Fs(Pα/H) .

Consider the distinguished element pα in Fs(Pα), then consider the image pα
under the map

Fs(Pα)→ Fs(Pα/H) .

Now let λ be an element in Aut(Pα|S), then that gives rise to an element λ in

Aut(Pα/H|S). Consider the homomorphism

Φ : Aut(Pα|S)→ Fs(Pα/H)

given by

Φ(λ) = λ(pα)

since Pα → S is Galois we have that Φ is surjective, and since H acts trivially on

the geometric fibers of Pα/H, we get that

Fs(Pα/H) ∼= Aut(Pα|S)/H

and we have

Aut(Pα|S)/H ∼= π1(S, s)/Hx
∼= E .

Therefore the functor Fs is essentially surjective. Now we have to prove that it is

fully faithful. For that let us consider Hom(Fs(X), Fs(Y )) we have to prove that

the map

Hom(X, Y )→ Hom(Fs(X), Fs(Y ))

is injective and surjective. Since a map f : Fs(X)→ Fs(Y ) is π1(S, s) equivariant

we have that

f(gx) = gf(x)
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and therefore the stabiliser of x in Fs(X) is contained in the stabiliser of f(x).

Now consider the Galois closure P of X and let Hx, Hf(x) correspond to the

subgroups those are images of the stabiliser of x, f(x) in π1(S, s). Then we can

realiseX and Y as Pα/Hx, Pα/Hf(x), sinceHx ⊂ Hf(x) we get a map fromX → Y .

This gives the surjectivity of

Hom(X, Y )→ Hom(Fs(X), Fs(Y ))

and the injectivity follows from 3.3.5.

3.4 The tame fundamental group of Abhyankar

In this section we discuss the important notion of the tame fundamental group,

which will be used in the étale monodromy in the next section. Tame fundalmen-

tal groups were introduced by Abhyankar, see [1] and [2].

Consider a finite surjective morphism from a normal connected scheme X̄ to a

normal connected scheme S̄. Let α be a geometric point of X̄, that is a morphism

from the spectrum of a separably closed field Ω to X̄ and β be its image point in

S̄, that is we have the commutative diagram.

Spec(Ω) α //

β

""E
EE

EE
EE

EE
EE

EE
EE

EE
E

X̄

f

��
S̄

Let a be a point of X̄ associated with α and b = f(a). Assume that the local

rings of the structure sheaf at a, b satisfy

dim(OX̄,a) = dim(OS̄,b) = 1 .

This assumption geometrically means the following. Let a belong to an affine

open neighborhood Spec(A) and let a be given by the prime ideal p. Then OX̄,a

is the local ring Ap and

dim(OX̄,a) = dim(Ap) = 1

this means that the prime ideal p is of height one, that is the codimension of a

in X̄ is 1. So the point a in X̄ determines a divisor on X̄. Similarly b determines

a divisor on S̄. Let X̄ be Galois over S̄, that is if G = Aut(X̄/S̄) be the auto-

morphism group of X̄ over S̄, and F (X̄), F (S̄) are the field of rational functions

of X̄, S̄ then we have

F (X̄)G = F (S̄) .
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If X̄ is étale over S̄, then it means that X̄ is a Galois covering of S̄. Let e be the

order of the ramification group

Gα = {σ ∈ G|σ ◦ α = α}

and assume e is invertible in OX̄,a. We then say that X̄ is tamely ramified at the

point α.

Now let A be a closed subscheme of pure codimension 1 in S̄, S the comple-

ment of A in S̄ and

X → S

is a Galois covering space of S with automorphism group Aut(X|S) = G′. Then

we claim that there exists a rational map fromX to a uniquely determined normal

irreducible scheme X̄ over S̄, that is finite over S̄ on which G′ acts. Here the

scheme X̄ is the normalization of S̄ in the function field F (X) of X, on the other

hand the scheme denoted by X̄ at the beginning of this section was already a

normal connected scheme. We prove the above assertion about the existence of a

rational map from X to X̄ in details. Let us do everything at the level of affine

integral schemes over a field k. Let

S̄ = Spec(R), X = Spec(B)

Since

S = S̄ r A

and A is of pure codimension 1 closed subscheme, we can cover S by D(f), where

f ∈ R. For simplicity let us assume that S = Spec(Rf ). Then we have an

embedding

R ↪→ Rf

corresponding to the morphism

S → S̄ .

Now the morphism X → S is finite and surjective, that induces an embedding

Rf ↪→ B

and moreover B is embedded in its field of fractions B(0) . Let us consider the

integral closure of R inside B(0) and call it R̃. Then we have a morphism

R→ R̃ ↪→ B(0) .

At the level of schemes we have the following from the above analysis.

η ↪→ X → S ↪→ S̄

where η is the generic point of X. Also we have a morphism

X̄ → S̄
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and

η → X̄ .

This map η → X̄ defines a rational morphism from X to X̄. Since X̄ is the

normalization of S̄ in the function field F (X) we have by definition of a nor-

malization, the morphism X̄ → S̄ is finite. We call the covering space X → S

to be tamely ramified over S (with respect to the embedding S ↪→ S̄) when

X̄ is tamely ramified at all geometric points that lie over a generic point of an

irreducible component of A. Let

s : Spec(K)→ S

be a geometric point of S. We consider the category of those pointed Galois

coverings spaces

Spec(K) t //

s

""E
EE

EE
EE

EE
EE

EE
EE

EE
E

X

��
S

over (S, s) with Galois group Aut(X/S) that are tamely ramified. One can show

by using Abhyankar’s lemma A.I.11 in [12] that this category is filtered. Proceed-

ing as in 3.3.8 and using Abhyankar’s lemma we can show that Aut(X/S) forms

an inverse system, where we take the inverse system over all tamely ramified

pointed Galois covering spaces of (S, s). Now consider the inverse limit

lim←−
(X,t)

Aut(X/S) ; ,

where the limit is taken over all tamely ramified pointed covering spaces of (S, s).

We call it the tame fundamental group of (S, s) with respect to the embedding

S ↪→ S̄ and denote it as πtame
1 (S, s). Note that this definition of the tame fun-

damental group does depend on the choice of A. It is a factor group of the full

fundamental group π1(S, s). The kernel of this homomorphism is the subgroup

in π1(S, s) such that the corresponding morphism X̄ → S̄ is not tamely ramified.

Let n be a natural number such that all primes p not dividing n are invertible

in OS̄,b. Let

Ẑ(n)(1) = lim←−
(e,n)=1

µe(Ω)

here the system of all the µe(Ω) is considered as a projective system with the

mapping

µe(Ω)→ µe′(Ω)

ξ 7→ ξe/e
′
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for e′ dividing e. Now consider the following directed system of pointed schemes

over S̄. We say that (X, t) ≤ (X ′, t′), if there exists a morphism f : X̄ ′ →
X̄ such that f(t) = t′. This gives us a morphism from HomS̄(Spec(Ω), X̄ ′) to

HomS̄(Spec(Ω), X̄) over a generic geometric point

β : Spec(Ω)→ A ⊂ S .

Now we consider the inverse limit of this system lim−→(X,t)
HomS(Spec(Ω), X̄) of

pointed Galois covering spaces over a generic geometric point

β : Spec(Ω)→ A ⊂ S .

That is a coherent system of geometric points

Spec(Ω)
α(X,t) //

β

""E
EE

EE
EE

EE
EE

EE
EE

EE
E

X̄

��
S̄

by lemma 12 in [12] we have an isomorphism

µe(Ω) ∼= Gα ⊂ G

where e is the order of the ramification group

Gα = {σ|σ ◦ α = α} .

By this lemma we get an isomorphism

µe(Ω)→ Gα(X,t) ⊂ Aut(X/S)

where X → S is tamely ramified. This gives us a morphism

ϕα(X,t) : Ẑ(n)(1)→ Aut(X/S) .

Now we prove that the diagram

Ẑ(n)(1) //

$$I
II

II
II

II
II

II
II

II
II

I
Aut(X ′/S)

��
Aut(X/S)
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is commutative. We have following commutative diagram at the level of schemes

X ′ //

  A
AA

AA
AA

AA
AA

AA
AA

AA
X

��
S

This gives us the commutative diagram

µe(Ω) //

!!D
DD

DD
DD

DD
DD

DD
DD

DD
Gα′

��
Gα

where α, α′ are the geometric points such that we have the following.

Spec(Ω) α′
//

α

""E
EE

EE
EE

EE
EE

EE
EE

EE
E

X ′

��
X

This gives us that the diagram is commutative.

Ẑ(n)(1) //

$$I
II

II
II

II
II

II
II

II
II

I
Aut(X ′/S)

��
Aut(X/S)

Therefore by the universality of the inverse limit we have a homomorphism

ϕα : Ẑ(n)(1)→ πtame
1 (S, s) .

If we choose some other element α′ from the inverse limit lim−→(X,t)
HomS̄(Spec(Ω), X̄)

then ϕα
′
arises by conjugation by an element of πtame

1 (S, s). This is because of the

following. α, α′ are given by a coherent system of geometric points α(X, t), α′(X, t)

such that we have

ϕα
′(X,t)(ξ) = σXϕ

α(X,t)(ξ)σ−1
X

for σX in Aut(X/S) and for ξ in µe(Ω). Therefore passing to the inverse limit we

get a σ in πtame
1 (S, s) such that

ϕα
′
(ξ) = σϕα(ξ)σ−1
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for ξ in Ẑ(n)(1). Therefore the conjugacy class of ϕα only depend on β : Spec(Ω)→
S̄.

Definition 3.4.1. We denote by

γβ : Ẑ(n)(1)→ πtame
1 (S, s)

any element from the conjugacy class of homomorphisms

ϕα : Ẑ(n)(1)→ πtame
1 (S, s) .

Now let P1 be the projective line over the separably closed base field k and K

is a separably closed extension field. We consider the geometric points

s : Spec(K) −→ P1

and

βi : Spec(K) −→ P1 ; ,

i = 0, · · · , r. Let a, bi for i = 0, · · · , r be points associated to the geometric points

s, βi for i = 0, · · · , r respectively, and bi’s are pairwise distinct and the set

A = {b0, · · · , br}

is closed. Then we want to determine the tame fundamental group

πtame
1 (P1 r A, s)

of the pointed projective line. Now we state without proof the following two

results which are going to be used in the next section.

Proposition 3.4.2. For a suitable choice of the homomorphism

γβ : Ẑ(p)(1)→ πtame
1 (P1 r A, s)

in their conjugacy classes the images generate a dense subgroup in πtame
1 (P1rA, s).

Here p is one if the characteristic of the field is 0 or p if the characteristic is p.

Proof. For a proof please see [12] A.I.15.

Now consider the n-dimensional projective space Pn over an algebraically

closed field k, an irreducible reduced hypersurface F in Pn and a line D in Pn

that meets F only transversally at smooth points. Let F ∩D is {b0, · · · , br} and
let

βν : Spec(k)→ D

for ν = 0, · · · , r be the geometric points associated with the underlying ordinary

points bν and let

s : Spec(K)→ D r A ⊂ Pn r F

be another geometric point of D r A and thus also of Pn r F . Here K is a

separably closed extension field of k. Then we have the following result.
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Proposition 3.4.3. There is a homomorphism

q : πtame
1 (D r A, s)→ πtame

1 (Pn r F, s)

which is surjective. The homomorphisms

q ◦ γβ : Ẑ(p)(1)→ πtame
1 (Pn r F, s)

are conjugate in π1(Pn r F, s).

Proof. For an outline of the proof please see the discussion after A.I.16 in [12].

3.5 Étale Monodromy and the Picard-Lefschetz

formula

In this section, we consider an even dimensional smooth irreducible projective

variety and consider a Lefschetz pencil on it and study the action of the étale

fundamental group on the cohomology of the fibers of the Lefschetz pencil.

So let X be an irreducible smooth projective variety over an algebraically

closed ground field k of arbitrary characteristic and fix an embedding of X in

PN such that the embedding is a Lefschetz embedding [12] [chapter III, definition

1.4]. By Lefschetz embedding we mean the following. Let X be embedded inside

some PN , then this embedding is called a Lefschetz embedding if there exists a

closed set A in (PN)∨ of codimension greater or equal to 2 such that the following

conditions are satisfied by the hyperplanes H with co-ordinates in k, that does

not lie in A.

(I) H does not contain any connected component of X.

(II) The scheme theoretic intersection H∩X contains at most one singular point

and when such a point exists it is an ordinary double point.

Existence of a Lefschetz embedding in arbitrary characteristic and over an infinite

field is guaranteed by the following proposition according to [12] proposition 1.5

in chapter III, which was originally proved in SGA 7, II, exp. XVII.

Proposition 3.5.1. Let X be an irreducible smooth projective variety, dimX ≥ 1

over an infinite base field k. Let j : X ↪→ Pr be a projective embedding. Denote

by

j(d) : X ↪→ PN

the composition of j with the Veronese embedding Pr → PN of degree d. Then:

(a) In the case of characteristic 0, j = j(1) is a Lefschetz embedding.

(b) j(d) is always a Lefschetz embedding for d ≥ 2.
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Now let the dimension of X be even and

dim(X) = n+ 1

where n = 2m + 1. Let F be the dual variety of X, that is the collection of

all the hyperplanes H ⊂ PN that touches X at some point. We need Lefschetz

embedding because we want to consider Lefschetz pencils on the projective variety

X and the existence of a Lefschtez pencil is guaranteed by the existence of a

Lefschetz embedding. Let us consider a Lefschetz pencil on X, that is, take

projective line D in PN such that it gives rise to a rational morphism from X

to D. Resolving the indeterminacy locus of this rational morphism we get the

following diagram,

X̃ //

f

""D
DD

DD
DD

DD
DD

DD
DD

DD
D X

��
P1 = D

where X̃ is the blow-up of X along the indeterminacy of the rational morphism

X 99K P1 = D .

So we get a regular morphism from X̃ to D, by definition of a Lefschetz pencil

we have that, the fibers of this morphism is either smooth or it contains exactly

one ordinary double point. Let F meet D transversally at only at smooth points,

such that for any point s ∈ F ∩D = A we have f−1(s) is singular and it contains

exactly one singular point, which is an ordinary double point. Let Ω be the

separable closure of the function field k(D) = K and let

ω : Spec(Ω)→ D r A

be the corresponding geometric point. For a point s in A let R(s) be the strict

Henselization of the ring OD,s and is denoted by ÕD,s and let D(s) = Spec(ÕD,s).

Then since we have a homomorphism ϕ : R(s) → Ω that identifies Ω with the

separable closure of the quotient fieldK ofR(s), we get the following commutative

diagram.

Spec(Ω) ω̃ //

ω

##G
GG

GG
GG

GG
GG

GG
GG

GG
GG

D(s)

��
D

We consider the following map

Gal(Ω/K)→ Ẑ(p)(1) = lim←−
p.n

µn(k)
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that is induced by the system of homomorphisms

Φr : Gal(Ω/K)→ µn(k)

given by

Φr(σ) = σ(ϕ(π)1/r)/ϕ(π)1/r

by the universality of the inverse limit we have a homomorphism

Φ : Gal(Ω/K)→ Ẑ(p)(1)

here π is the generator of the maximal ideal of R(s). Now we prove that Gal(Ω/K)

is isomorphic to π1(D(s)r {s}, ω̃). Let us have a finite, étale, Galois cover Y of

D(s)r {s}, and we have the morphism

Spec(K)→ D(s)r {s}

consider the following Cartesian square.

Y ′ = Y ×D(s)r{s} Spec(K)

��

// Y

g

��
Spec(K) // D(s)r {s}

Then since the base change of an étale morphism is étale the morphism

Y ×D(s)r{s} Spec(K)→ Spec(K)

is étale and since the base change is happening over Spec(K), and since Y is

finite over D(s)r {s} we get that, D(s)r {s} is covered by Vi = Spec(Bi)’s such

that g−1(Vi) = Spec(Ai) and Ai is a finitely generated Bi module. This gives us

that Ai ⊗Bi
K is a finitely generated K-vector space, in fact a finitely generated

K algebra. Therefore we get an integral scheme Spec(Ai ⊗Bi
K) over Spec(K),

this gives us that the Ai ⊗Bi
K is an integral domain and hence a finite field

extension of K. Therefore the function field K(Y ′) is a finite field extension of

K and any automorphism σ of Y gives us an automorphism of Y ′, which gives

us an automorphism σ of K(Y ′) over K. Therefore we have a morphism from

Aut(Y/D(s)r {s})→ Aut(K(Y ′)/K)

therefore passing to the inverse limit we have that

π1(D(s)r {s}, ω̃)→ Gal(Ω/K) .

On the other hand suppose that we have a finite extension L of K such that the

normalization of D(s) r {s} in L is unramified, call it Y . Then Y is flat and
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unramified over D(s)r {s}, therefore it is étale. It is easy to see that it is finite.

Any automorphism σ of L gives rise to an automorphism of Y over D(s)r {s}.
This gives us the inverse map

Gal(Ω/K)→ π1(D(s)r {s}, ω̃) .

Now we have the following commutative diagram

π1(D(s)r {s}, ω̃)

��

// π1(D r A,ω)

��
Ẑ(p)(1) // πtame

1 (D r A,ω)

by A.I.13 in [12]. Let as be the kernel of the morphism

π1(D(s)r {s}, ω̃)→ Ẑ(p)(1)

and the groups π1(D(s)r{s}, ω̃) generate the group π1(DrA,ω), therefore since
the group πtame

1 (D rA,ω) is a quotient of π1(D rA,ω), and the above diagram

is commutative we get that the kernel of the map

π1(D r A,ω)→ πtame
1 (D r A,ω)

is generated by the images of the kernels as of the map

π1(D(s)r {s}, ω̃)→ π1(D r A,ω)

and the tame fundamental group is the quotient of π1(D r A,ω) by the small-

est normal subgroup that contains all images of the kernels as. A continuous

representation of π1(D r A, ω) on a finite dimensional vector space V over Ql

respectively the π1(D r A,ω) module V is said to be tamely ramified if the rep-

resentation factors through πtame
1 (D r A,ω). That is equivalent to say that the

kernels as acts trivially on the vector space V for all s ∈ A and for all ω̃. A locally

constructible sheaf F on D r A is called tamely ramified when the stalk Fω is

a tame π1(D r A,ω) module. Every point s ∈ A gives rise to a local Lefschetz

pencil of the following type.

X̃ ×D D(s)

fD(s)

��

// X̃

f

��
D(s) // D = P1

The generic fiber respectively the special fiber over s is isomorphic to the generic

fiber over ω and f−1(s). By the proper base change theorem Rif∗(QlX̃)ω is

canonically isomorphic to H i
ét(X̃ω,Ql) and likewise Rif∗(QlX̃)s is isomorphic to

H i
ét(X̃s,Ql). Now we formulate the Picard-Lefschetz formulas.
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Theorem 3.5.2. Let V be a π1(D r A,ω) module Rnf∗(QlX̃)ω = Hn
ét(X̃ω,Ql)

then we have the following.

(I) The sheaves Rif∗(QlX̃) are locally constant for i ̸= n, n + 1 hence constant

on D, since the fundamental group of D vanishes.

(II) For each s ∈ A there is a vanishing cycle δs in V (m) that depends upto

conjugation only on s and not on the choice of ω̃, a cohomology class δ∗s
in Rn+1f∗(QlX̃)s(n − m) and an exact sequence between the specialization

mappings with respect to ω̃.

0→ Rnf∗(QlX̃)s → Rnf∗(QlX̃)ω → Ql(m− n)→

Rn+1f∗(QlX̃)s → Rn+1f∗(QlX̃)ω →

where the map

Rnf∗(QlX̃)ω → Ql(m− n)

is

a 7→ ⟨a, δs⟩

and the map

Ql(m− n)→ Rn+1f∗(QlX̃)s

is

λ 7→ λδ∗s .

(III) The sheaves Rnf∗(QlX̃) and Rn+1f∗(QlX̃) are locally constant on D r A.

π1(D r A, ω) acts trivially on Rn+1f∗(QlX̃)ω and tamely on Rnf∗(QlX̃)ω.

For x ∈ Rnf∗(QlX̃)ω and u ∈ Ẑ(p)(1) we have that

γs(u)(x) = x− (−1)mū⟨x, δs⟩δs

here ū is the natural image of u in Zl(1).

First we discuss what is ū. Let us consider the natural homomorphisms

lim←−µn → µn

and then consider the map

µn → (µn)X

given as follows. First we have

(µn)X(X
′) = {s|sn = 1} ,

let a be an n-th root of unity, then define the regular map

sa : X
′ → A1(k)
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by

sa(u) = a .

Then it is clear that we have

sna = 1 .

That gives us a morphism from µn to (µn)X as a morphism of presheaves. Now

the map

a 7→ al

from

µln+1 → µln

is such that

lim←−µln
//

""F
FF

FF
FF

FF
FF

FF
FF

FF
F

µln+1

��
µln

is commutative and we get the diagram

lim←−µln
//

##G
GG

GG
GG

GG
GG

GG
GG

GG
G

(µln+1)X

��
(µln)X

is commutative therefore by the universality of the inverse limit we get a unique

map from

lim←−µln → Zl(1) .

We denote this by ū.

Proof. Since f is smooth and proper over D r A all the sheaves Rif∗(QlX̃) are

locally constant on D r A by the theorem 8.9 in chapter I in [12]. Now consider

a local Lefschetz pencil

X̃ ×D D(s)
fD(s)→ D(s)

then since D(s) is strictly Henselian valuation ring and the point s is such that

f−1
D(s)(s) is singular and has one ordinary double point. Then we can use the

theorem 4.3 in chapter III in [12] which says the following. Let f : X → S be

a flat, proper morphism where S = Spec(R), R is a strictly Henselian valuation

ring and f is of odd fiber dimension. Let f be singular at just one point s, then

H i
ét(Xs,Ql)→ H i

ét(Xω,Ql)
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is an isomorphism for i ̸= n, n + 1, where ω is the geometric generic point of S.

Then by applying this theorem to the local Lefschetz pencil

X̃ ×D D(s)
fD(s)→ D(s)

we get that

H i
ét(Xs,Ql) ∼= H i

ét(Xω,Ql)

for all i ̸= n, n + 1, therefore the sheaf Rif∗(QlX̃) is locally constant on D by

lemma 8.12 in chapter I in [12] which says the a sheaf G is locally constant on a

scheme S if and only if all the specialization homomorphisms are isomorphisms

and all stalks of G are finite. Therefore we get that Rif∗(QlX̃) is locally constant

on D. II) follows from theorem 4.3 in chapter 3 in [12]. Now by the same theorem

4.3 in chapter 3 in [12] we have that Gal(Ω/K) acts trivially on Hn+1(X̃ω,Ql).

Since Gal(Ω/K) is isomorphic to π1(D(s)r {s}) we have that π1(D(s)r {s}) is
acting trivially on Hn+1(X̃ω,Ql). These groups and their conjugates generate the

group π1(DrA,ω). Therefore π1(DrA, ω) is acting trivially on Hn+1(X̃ω,Ql).

The action of π1(D(s) r {s}, ω̃), that is the action of Gal(Ω/K) on Hn(X̃ω,Ql)

factors through the homomorphism

Φ : π1(D(s)r {s}, ω̃)→ Ẑ(p)(1)

and again we use the commutative diagram

π1(D(s)r {s}, ω̃)

��

// π1(D r A,ω)

��
Ẑ(p)(1) // πtame

1 (D r A,ω)

and observe the fact that the kernel as of the map

π1(D(s)r {s}, ω̃)→ Ẑ(p)(1)

acts trivially on Hn(X̃ω,Ql), therefore the action of π1(DrA,ω) factors through

the action of πtame
1 (D r A,ω). So we are done. Set,

E =
∑

s∈A,σ∈πtame
1 (DrA,ω)

Q(−m)σ(δs)

this is called the space of vanishing cycles in V .

Proposition 3.5.3. All the vanishing cycles δs are conjugate up to sign. In

particular E vanishes if and only if all vanishing cycles δs are zero.
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Proof. We embed the Lefschetz pencil X̃ → D in the family of hyperplane sections

of X.

X̃

f

��

// Z ⊂ X × PN∨

g

��

D // PN∨

Here

Z = {(x,H) : x ∈ H}

and the map g is smooth outside the dual variety F of X, that is the variety

consisting of all hyperplanes that touches X in atleast one point. Denote F ∩D =

A, we can assume that the codimension of F is one otherwise F ∩D = A is empty.

F meets D transversally and only in smooth points. By definition of a Lefschetz

embedding there exists a closed subset F ′ of codimension greater or equal than 2,

such that for all points x ∈ F r F ′, we have the fiber g has exactly one ordinary

double point. Now consider a point a in PN∨ r (F r F ′) and consider the local

ring OPN∨,a and its strict Henselization Õ∨
PN , a and the spectrum of it, call it D(a).

Then consider the Cartesian square.

X̃ ×PN∨ D(a)

gD(a)

��

// X̃

g

��

D(a) // PN∨

Let ω, ω̃ be as before. Now by the theorem 4.3 in chapter 3 of [12] we get that

the action of

π1(D(a)r {a}, ω̃)

on Rng∗(Ql) factors through the homomorphism

π1(D(a)r {a})→ Ẑ(p)(1)

therefore we have that π1(PN
∨r(FrF ′)) acts tamely onRng∗(Ql)ω and π

tame
1 (PN∨r

F ) is a subgroup of πtame
1 (PN∨r(F rF ′)), and therefore π1(PN

∨rF ) acts tamely

on Rng∗(Ql)ω. Following A.I theorem 16 in [12] we get a surjective map

q : πtame
1 (D r A,ω)→ πtame

1 (PN∨ r F, ω) .
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Now consider the Cartesian square

X̃

f

��

i // Z ⊂ X × PN∨

g

��

D
j // PN∨

then by the proper base change theorem it follows that

Rnf∗(QlX̃)ω = Rng∗(QlX̃)ω = V

therefore the action of πtame
1 (D rA, ω) factors through q. On the other hand all

the homomorphisms

q ◦ γs : Ẑ(p)(1)→ πtame
1 (PN∨ r F )

are conjugate in πtame
1 (PN∨ r F ) due to theorem A.I.16 in [12]. Thus for s, s′ in

A there is an element σ ∈ πtame
1 (D r A,ω) with

γ′s(u)(x) = σγs(u)σ
−1(x)

for all u ∈ Ẑ(p)(1) and x ∈ V . Therefore from the Picard-Lefschetz formula it

follows that

γ′s(u)(x) = x− (−1)mū⟨σ−1(x), δs⟩δs
for all u ∈ Ẑ(p)(1) and x ∈ V . Thus we have that

σδs = ±δs′ .

Corollary 3.5.4. The induced representation of πtame
1 (D r A,ω) on E/E ∩ E⊥

is absolutely irreducible.

Proof. Let L be an extension field of Ql and M a πtame
1 (D r A,ω) stable vector

subspace of E⊗L that is not contained in (E∩E⊥)⊗L. Then there is an element

x in M , and there is some δs such that

⟨x, δs⟩ ≠ 0 .

Then by the Picard-Lefschetz formula we have that

γs(u)x− x = (−1)m+1⟨x, δs⟩δs

which gives us that δs belongs to M , since the vanishing cycles are conjugate to

each other upto sign, this gives us that δs belongs to M for all s in A. That

proves that M = E ⊗ L.
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Chapter 4

Algebraic cycles on nonsingular
cubics in P5

4.1 Chow schemes and countability results

Fix a field k of characteristic zero, and take the category N of all Noetherian

schemes over k. Then we can consider the presheaf of abelian monoids Cr(X) on

N, such that for any scheme S in N the monoid

Cr(X)(S) = Cr(X × S/S)

is freely generated by relative cycles on X × S of (relative) dimension r over S,

see [35].

If X is equidimensional, then we will also write C p(X)(S) or C p(X × S/S)
for the same monoids of relative cycles of relative codimension p, where p =

dim(X)− r.
If X is projective over k, we fix a closed embedding of X into Pm and consider

the subpresheaf C p
d (X) of relative cycles of degree d in C p(X).

Since the characteristic of k is zero, the presheaf C p
d (X) on N is representable

by the Chow scheme Cp
d(X) projective over k, see [22] or [35]. In other words,

for each S one has the bijection

θX(S) : C p(X × S/S) ∼→ Hom(S,Cp(X)) ,

functorial in S. The bijections θ are functorial in X due to Corollary 3.6.3 in [35].

In case X is equi-dimensional, we may also write Cd,r(X) instead of Cp
d(X), where

r = dim(X)−p. Let also Cp(X) or Cr(X) be the coproducts of the corresponding

Chow schemes for all d ≥ 0.

It is trivial but worth noticing that if k′ is another field and

α : k
∼→ k′

is an isomorphism of fields, the scheme Cr(X
′) is the pull-back of the scheme

Cr(X) with respect to the morphism Spec(α), where X ′ is the pull-back of X, and
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the corresponding morphism from Cp(X ′) to Cp(X) is an isomorphism of schemes.

The bijections θX′ and θX commute by means of the obvious isomorphisms on

monoids and Hom-sets induced by the isomorphism α.

In what follows the word “monoid” will always mean the commutative (i.e.

abelian) monoid written additively.

For a monoid M its group completion M+ is the minimal group arising from

M , i.e. the value of the left adjoint to the forgetful functor from groups to

monoids. It can be constructed in several fairly different ways. We prefer the

following one. Consider the quotient of M ⊕ M by the image of the diagonal

embedding. Let τ be the corresponding quotient homomorphism, and let ν be

the composition of the embedding of M as one of the two direct summands and

the homomorphism τ . Then

ν :M →M+

possesses the obvious universal property, and for any (a, b) in M ⊕M the value

τ(a, b) is the difference ν(a)− ν(b).
Notice that if M is a cancellation monoid then ν is injective, and we can

identify M with its image in M+. Modulo this identification,

τ(a, b) = a− b .

In particular, we can consider the presheaf Z p(X) of abelian groups on N,

such that for each S the group of sections Z p(X × S/S) is the completion

C p(X × S/S)+

of the monoid C p(X × S/S).
The Chow scheme

Cp(X) =
⨿
d≥0

Cp
d(X)

is naturally a commutative monoid, which can be completed getting the abelian

group

Zp(X) = Cp(X)+

with the attached homomorphisms τ and ν.

We will also be using the schemes of morphisms from one noetherian scheme

to another. More precisely, if S and Y are two Noetherian schemes over the

ground field k, then we can consider the functor

Hom(S, Y )

on N sending a scheme T to the set Hom(S, Y )(T ) of morphisms from S × T to

Y × T over T . This is a subfunctor of the Hilbert functor

H ilb(S × Y )
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via the graphs of the morphisms between schemes.

It is well-known that if S and Y are projective over k, the Hilbert functor is

representable by the projective Hilbert scheme Hilb(S × Y ) and Hom(S, Y ) is

representable by an open subscheme Hom(S, Y ) in Hilb(S × Y ), see [11]

Let now d be a positive integer. Then one can choose a Hilbert polynomial

Φd, such that the set-theoretic intersection

Homd(S, Y ) = Hom(S, Y ) ∩H ilbΦd
(S × Y )

inside H ilb(S×Y ) would be representable by an open subscheme Homd(S, Y ) in

the projective scheme HilbΦd
(S×Y ). We recall the construction of H ilbΦd

(S×Y )

in brief. Let O(1) be a relatively ample line bundle on S × Y and let Φd be a

polynomial, then the functor H ilbΦd
(S×Y ) from schemes over S to sets is defined

as follows. For scheme Z over S we have H ilbΦd
(S × Y )(Z) is the set of closed

subschemes V of Z ×S S × Y , which are proper and flat over Z and have Hilbert

polynomial Φd. The Hilbert polynomial of the closed subscheme V of Z×S S×Y
is the Hilbert polynomial of OV .

In particular, if S = P1 and Y is embedded into some Pn then we obtain a

quasiprojective scheme

Homd(P1, Y )

over the ground field k parametrizing rational curves of degree d in Y .

By the universal property of fibred products over k one has the natural bijec-

tion between Hom(S, Y )(T ) and Hom(T × S, Y ). This gives the adjunction

Hom(T × S, Y ) ≃ Hom(T,Hom(S, Y )) .

In ones turn, this adjunction induces the regular evaluation morphism

eS,Y : Hom(S, Y )× S → Y .

The latter also induces the regular evaluation morphism of quasi-projective schemes

eS,Y : Homd(S, Y )× S → Y ,

for each positive integer d. In particular, if P is a closed point of P1 one has the

regular evaluation morphism

eP : Homd(P1, Y )→ Y

sending f to f(P ). This all can be found in [22].

Being equipped with the above tools, we can now study rational equivalence

of algebraic cycles in terms of rational curves on appropriate Chow schemes.

So, take a nonsingular projective X and embed it into the projective space

Pn over k. Let A and A′ be two algebraic cycles of codimension p on X. As we
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have already mentioned in Introduction, the cycle A is rationally equivalent to

the cycle A′ if and only if there exists an effective, i.e. positive, algebraic cycle Z

on X × P1 and an effective algebraic cycle B on X, such that

Z(0) = A+B and Z(∞) = A′ +B .

Both Z and B are of codimension p in X × P1 and X respectively.

Now, assume that A is rationally equivalent to A′, and let

fZ = θ(Z) and fB×P1 = θ(B × P1)

be two regular morphisms from P1 to C p(X). Here θ = θX(P1) is the above

bijection from C p(X × P1/P1) to Hom(P1, Cp(X)). Let also

f = fZ ⊕ fB×P1

be the morphism from P1 to Cp(X)⊕ Cp(X) generated by fZ and fB×P1 .

Notice that as Cp(X) is a cancellation monoid, for any two elements a, b ∈
Cp(X) the value τ(a, b) in Cp(X)+ is a − b. Here we identify Cp(X) with its

image in Cp(X)+ under the injective homomorphism ν.

Then

τf(0) = τ(fZ(0), fB×P1) = fZ(0)− fB×P1(0) = Z(0)−B = A

and

τf(∞) = τ(fZ(∞), fB×P1) = fZ(0)− fB×P1(∞) = Z(∞)−B = A′ .

Vice versa, if there is a regular morphism

f = f1 ⊕ f2 : P1 → Cp(X)⊕ Cp(X) ,

such that τf(0) = A and τf(∞) = A′, by setting Z1 and Z2 to be two algebraic

cycles in C p(X × P1/P1), such that θ(Zi) = fi for i = 1, 2, and

Z = Z1 − Z2 ,

we obtain that Z(0) = A and Z(∞) = A′. It means that A is rationally equivalent

to A′. Recall that we fix an embedding X inside some Pm.
Now, for any non-negative integers d1, . . . , ds let

Cp
d1,...,ds

(X)

be the product

Cp
d1
(X)× · · · × Cp

ds
(X)

over k. Following the work of Roitman, [28], for any degree d ≥ 0 we define

Wd

60



to be the set of ordered pairs

(A,B) ∈ Cp
d,d(X) ,

such that the cycle A is rationally equivalent to the cycle B on X. For any

non-negative u and positive v let also

W u,v
d

be the subset of closed points (A,B) in Cp
d,d(X), such that there exists

f ∈ Homv(P1, Cp
d+u,u(X))

with τf(0) = A and τf(∞) = B. Then

W u,v
d ⊂ Wd

and

Wd = ∪u,vW u,v
d .

Let also W̄ u,v
d be the Zariski closure of the set W u,v

d in the projective scheme

Cp
d,d(X).

The following proposition is a straightforward generalization of the result in

[28] migrated to Roitman’s paper from the famous paper [24].

Proposition 4.1.1. For any d, u and v the set W u,v
d is a quasi-projective sub-

scheme in Cp
d,d(X) whose Zariski closure W̄ u,v

d is contained in Wd.

Proof. Let

e : Homv(P1, Cp
d+u,u(X))→ Cp

d+u,u,d+u,u(X)

be the evaluation morphism sending f : P1 → Cp
d+u,u(X) to the ordered pair

(f(0), f(∞)), and let

s : Cp
d,u,d,u(X)→ Cp

d+u,u,d+u,u(X)

be the regular morphism sending (A,C,B,D) to (A+C,C,B +D,D). The two

morphisms e and s allow to consider the fibred product

V = Homv(P1, Cp
d+u,u(X))×Cp

d+u,u,d+u,u(X) C
p
d,u,d,u(X) .

This V is a closed subvariety in the product

Homv(P1, Cp
d+u,u(X))× Cp

d,u,d,u(X)

over Spec(k) consisting of quintuples (f,A,C,B,D) such that

e(f) = s(A,C,B,D) ,
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i.e.

(f(0), f(∞)) = (A+ C,C,B +D,D) .

The latter equality gives

pr2,3(V ) ⊂ W u,v
d .

where pr2,3 is the projection of the product Homv(P1, Cp
d+u,u(X)) × Cp

d,u,d,u(X)

onto Cp
d,d(X).

Vice versa, if (A,B) is a closed point of W u,v
d , there exists a regular morphism

f ∈ Homv(P1, Cp
d+u,u(X))

with τf(0) = A and τf(∞) = B.

Let f(0) = (C ′, C) and f(∞) = (D′, D). Then

τf(0) = C ′ − C = A and τf(∞) = D′ −D = B

in the completed monoid Zp(X) = Cp(X)+. In other words, there exist effective

codimension p algebraic cycles M and N on X, such that

C ′ +M = C + A+M and D′ +N = D +B +N

in Cp(X).

Since Cp(X) is a free monoid, it possesses the cancellation property. There-

fore, C ′+M = C +A+M implies C ′ = C +A and D′+N = D+B+N implies

D′ = D +B. This yields e(f) = s(A,C,B,D), whence

(f, A,C,B,D) ∈ V .

It means that (A,B) is in pr2,4(V ).

Thus,

pr2,3(V ) = W u,v
d .

Being the image of a quasi-projective variety under the projection pr2,4 the

set W u,v
d is itself a quasi-projective variety.

Let

s̃ : Cp
d,d,u,u(X)→ Cp

d+u,d+u,u,u(X)

be the morphism obtained by composing and precomposing s with the transpo-

sition of the second and third factors in the domain and codomain of the above

morphism s. Then

Wd = pr1,2(s̃
−1(Wd+u ×Wu)) .

Let (A,B,C,D) be a closed point in Cp
d,d,u,u(X), such that

s̃(A,B,C,D) = (A+ C,B +D,C,D)
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is in W 0,v
d+u × W 0,v

u . The latter condition means that there exist two regular

morphisms

g ∈ Homv(P1, Cp
d+u(X))

and

h ∈ Homv(P1, Cp
u(X))

with

g(0) = A+ C , g(∞) = B +D , h(0) = C and h(∞) = D .

Let f = g × h. Then

f ∈ Homv(P1, Cp
d+u,u(X)) ,

f(0) = (A+ C,C)

and

f(∞) = (B +D,D) .

Hence,

τf(0) = A and τf(∞) = B .

It means that

(A,B) ∈ W u,v
d .

Thus, we have shown that

pr1,2(s̃
−1(W 0,v

d+u ×W
0,v
u )) ⊂ W u,v

d .

Vice versa, take a point (A,B) in W u,v
d and let f be in Homv(P1, Cp

d+u,u(X)),

such that τf(0) = A and τf(∞) = B. Composing f with the projections

of Cp
d+u,u(X) onto Cp

d+u(X) and Cp
u(X) one can show that W u,v

d is a subset in

pr1,2(s̃
−1(W 0,v

d+u ×W 0,v
u )). Thus,

W u,v
d = pr1,2(s̃

−1(W 0,v
d+u ×W

0,v
u )) .

Since s̃ is continuous and pr1,2 is proper,

W̄ u,v
d = pr1,2(s̃

−1(W̄ 0,v
d+u × W̄

0,v
u )) .

This gives that to prove the second assertion of the proposition it is enough to

show that W̄ 0,v
d is contained in Wd.

Let (A,B) be a closed point of W̄ 0,v
d . If (A,B) is in W 0,v

d , then it is also in

Wd. Suppose

(A,B) ∈ W̄ 0,v
d rW 0,v

d .

Let W be an irreducible component of the quasi-projective variety W 0,v
d whose

Zariski closure W̄ contains the point (A,B). Let U be an affine neighbourhood

of (A,B) in W̄ . Since (A,B) is in the closure of W , the set U ∩W is non-empty.
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Let us show that we can always take an irreducible curve C passing through

(A,B) in U . Indeed, write U as Spec(A). It is enough to show that there exists

a prime ideal in Spec(A) of height n − 1, where n is the dimension of Spec(A),

where A is Noetherian. Since A is of dimension n there exists a chain of prime

ideals

p0 ⊂ p1 ⊂ · · · ⊂ pn = p

such that this chain can not be extended further. Now consider the subchain

p0 ⊂ p1 ⊂ · · · ⊂ pn−1 .

This is a chain of prime ideals and pn−1 is a prime ideal of height n − 1, so we

get an irreducible curve.

Let C̄ be the Zariski closure of C in W̄ . Two evaluation regular morphisms

e0 and e∞ from Homv(P1, Cp
d(X)) to Cp

d(X) give the regular morphism

e0,∞ : Homv(P1, Cp
d(X))→ Cp

d,d(X) .

ThenW 0,v
d is exactly the image of the regular morphism e0,∞, and we can choose a

quasi-projective curve T in Homv(P1, Cp
d(X)), such that the closure of the image

e0,∞(T ) is C̄.

For that consider the curve C in W so it is contained in W 0,v
d . We know that

the image of e0,∞ is W 0,v
d . Consider the inverse image of C̄ under the morphism

e0,∞. Since C̄ is a curve, the dimension of e−1
0,∞(C) is greater than or equal than

1. So it contains a curve. Consider two points on C̄, consider their inverse images

under e0,∞. Since Homv(P1, Cp
d(X)) is a quasi projective variety, e−1

0,∞(C̄) is also

projective, we can embed it into some Pm and consider a smooth hyperplane

section through the two points fixed above. Continuing this procedure we get a

curve containing these two points and contained in e−1
0,∞(C). Therefore we get a

curve T mapping onto C̄. So the closure of the image of T is C̄.

Now, as we have mentioned above, Homv(P1,C p
d (X)) is a quasi-projective

variety. This is why we can embed it into some projective space Pm. Let T̄ be

the closure of T in Pm, let T̃ be the normalization of T̄ and let T̃0 be the pre-image

of T in T̃ . Consider the composition

f0 : T̃0 × P1 → T × P1 ⊂ Homv(P1, Cp
d(X))× P1 e→ Cp

d(X) ,

where e is the evaluation morphism eP1,Cp
d (X). The regular morphism f0 defines a

rational map

f : T̃ × P1 99K Cp
d(X)

Since T̃ is a non-singular projective curve, the product T̃ × P1 is a non-singular

projective surface over the ground field. Under this condition there exists a finite

chain of σ-processes (T̃ × P1)′ → T̃ × P1 resolving indeterminacy of f and giving

a regular morphism

f ′ : (T̃ × P1)′ → Cp
d(X) .
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The regular morphism T̃0 → T → C̄ extends to the regular morphism T̃ → C̄.

Let P be a point in the fibre of this morphism at (A,B). For any closed point Q

on P1 the restriction f |T̃×{Q} of the rational map f onto T̃ × {Q} ≃ T̃ is regular

on the whole curve T̃ , because T̃ is non-singular. Then

(f |T̃×{0})(P ) = A and (f |T̃×{∞})(P ) = B .

It means that the points A and B are connected by a finite collection of curves

which are the images of rational curves on (T̃ ×P1)′ under the regular morphism

f ′. In turn, it follows that A is rationally equivalent to B, whence

(A,B) ∈ Wd .

In what follows, for any equi-dimensional algebraic scheme V let CHp(V ) be

the Chow group, with coefficients in Z, of codimension p algebraic cycles modulo

rational equivalence on V . Let then

θpd : C
p
d,d(X)→ CHp(X)

be the map sending (P,Q) to the class of the difference ZP − ZQ, where ZP and

ZQ are degree d and codimension p cycles on X corresponding to the points P

and Q respectively.

Corollary 4.1.2. (θpd)
−1(0) is a countable union of irreducible Zariski closed

subsets in the Chow scheme Cp
d,d(X).

Proof. Proposition 4.1.1 gives that Wd is the countable union of Zariski closed

sets W̄ u,v
d over u and v. This completes the proof.

4.2 Proper push-forward on Chow groups

Let k be an algebraically closed uncountable field of characteristic zero. All

schemes in this section will be either over k or over the residue fields of points of

schemes over k. For an algebraic variety Y over k, let CHp(Y ) be the codimension

p Chow group of Y and let Ap(Y ) be the subgroup in CHp(Y ) generated by

algebraically trivial algebraic cycles on Y . Suppose V is another algebraic variety

over k with a closed point P0. Let Z be an algebraic cycle of codimension p on

the product V × Y . For any closed point P on V we have the standard algebraic

cycle Z(P ) of codimension n on Y . Obviously, the cycle

Z(P )− Z(P0)

is algebraically trivial on Y . Then we obtain a map

V → Ap(Y )

65



P 7→ [Z(P )− Z(P0)]

on Y . This map is nothing but the algebraic family of codimension n algebraically

trivial cycle classes on Y determined by the algebraic cycle Z on V × Y and the

fixed point P0 on the parameter variety V .

If now A is an abelian variety over k, then a group homomorphism Ap(Y )→ A

is called to be regular if its pre-composition with any family of algebraic cycles

V → Ap(Y ) in the above sense is a regular morphism over k. A regular homo-

morphism

ψpY : Ap(Y )→ ApY

into an abelian variety ApY over k is called to be universal if, having another

regular homomorphism ψ : Ap(Y )→ A, there exists a unique homomorphism of

abelian varieties ApY → A, such that the diagram

Ap(Y )
ψp
Y //

ψ

""D
DD

DD
DD

DD
DD

DD
DD

DD
D

ApY

∃!

��
A

commutes.

For example, in codimension n = 1, if Y is projective and nonsingular, the

universal regular homomorphism is the isomorphism

A1(Y )
∼→ Pic0(Y ) .

The main result in [25] says that ψpY always exists in codimension p = 2, for a

nonsingular projective Y .

Let Y and X be two nonsingular projective varieties over k, and let Z be a

correspondence of degree e from Y to X, where

e = dim(X)− dim(Y ) .

In other words, Z is an algebraic cycle of codimension dim(X) on Y × X. The

correspondence Z induces a homomorphism Z∗ from CHp(Y ) to CHp+e(X) de-

pending only on the class of rational equivalence of Z and preserving any adequate

equivalence relation on algebraic cycles. In particular, one has the homomorphism

Z∗ : A
p(Y )→ Ap+e(X) .

Then, for any regular morphism ϕ : Ap+e(X) → B the composition ϕ ◦ Z∗ :

Ap(Y )→ B is regular. If ψpX exists for Y then ϕ ◦ Z∗ induces the corresponding

regular homomorphism from ApY to B. If Z is the graph of a regular morphism

r : Y → X then we will write r∗ instead of Z∗.

Before to go any further, we need to prove a few fairly simple lemmas.
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Lemma 4.2.1. Let V be an irreducible quasi-projective algebraic variety over an

uncountable algebraically closed field. Then V cannot be written as a countable

union of its Zariski closed subsets, each of which is not the whole V .

Proof. Since V is supposed to be irreducible, without loss of generality we may

assume that V is affine. Let d be the dimension of V and suppose V = ∪n∈NVn
is the union of closed subsets Vn in V , such that Vn ̸= V for each n. By Emmy

Noether’s lemma, there exists a finite surjective morphism f : V → Ad over k.

Let Wn be the image of Vn under f . Since f is finite, it is proper. Therefore,

Wn are closed in Ad, so that we obtain that the affine space Ad is the union of

Wn’s. Since the ground field is uncountable, the set of all hyperplanes in Ad is

uncountable. Therefore, there exists a hyperplane H, such that Wn ̸⊂ H for any

index n. Induction reduces the assertion of the lemma to the case when d = 1.

A countable union V = ∪n∈NVn of algebraic varieties will be called irredundant

if Vn is irreducible for each n and Vm ̸⊂ Vn for m ̸= n. In an irredundant

decomposition, the sets Vn will be called c-components of V .

Lemma 4.2.2. Let Z be a countable union of algebraic varieties over an uncount-

able algebraically closed ground field. Then Z admits an irredundant decomposi-

tion, and such an irredundant decomposition is unique.

Proof. Let Z = ∪n∈NZ ′
n be a countable union of algebraic varieties over k. For

each n let Z ′
n = Z ′

n,1∪· · ·∪Z ′
n,rn be the irreducible components of Z ′

n. Ignoring all

components Z ′
m,i with Z

′
m,i ⊂ Z ′

n,j for some n and j we end up with a irredundant

decomposition. Having two irredundant decompositions Z = ∪n∈NZn and Z =

∪n∈NWn, suppose there exists Zm such that Zm is not contained in Wn for any

n. Then Zm is the union of the closed subsets Zm ∩Wn, each of which is not

Zm. This contradicts to Lemma 4.2.1. Therefore, any Zm is contained in some

Wn. By symmetry, any Wn is in Zl for some l. Then Zm ⊂ Zl. By irredundancy,

l = m and Zm = Wn.

Lemma 4.2.3. Let A be an abelian variety over an uncountable algebraically

closed field, and let K be a subgroup which can be represented as a countable

union of Zariski closed subsets in A. Then the irredundant decomposition of K

contains a unique irreducible component passing through 0, and this component

is an abelian subvariety in A.

Proof. Let K = ∪n∈NKn be the irredundant decomposition of K, which exists by

Lemma 4.2.2. Since 0 ∈ K, there exists at least one component in the irredundant

decomposition, which contains 0. Suppose there are s components K1, . . . , Ks

containing 0 and s > 1. The summation in K gives the regular morphism from

the product K1 × · · · ×Ks into A, whose image is the irreducible Zariski closed

subset K1 + · · · + Ks in A. By Lemma 4.2.1, there exists n ∈ N, such that
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K1+ · · ·+Ks ⊂ Kn and so Ki ⊂ Kn for each 1 ≤ i ≤ n. By irredundancy, s = 1,

which contradicts to the assumption s > 1.

After renumbering of the components, we may assume that 0 ∈ K0. If K0 =

{0}, then K0 is trivially an abelian variety. Suppose K0 ̸= {0} and take a non-

trivial element x in K0. Since −x+K0 is irreducible, it must be in some Kn by

Lemma 4.2.1. As 0 ∈ −x +K0 it follows that 0 ∈ Kn and so n = 0. It follows

that −x ∈ K0. Similarly, since K0 + K0 is irreducible and contains K0, we see

that K0 +K0 = K0. Being a Zariski closed abelian subgroup in A, the set K0 is

an abelian subvariety in A.

Let now r : Y → X be a proper morphism of nonsingular projective varieties

over k and impose the following two assumptions on the variety Y , which will be

considered as standard assumptions throughout the paper.

(A) the universal regular homomorphism ψpY exists and is an isomorphism of

abelian groups and

(B) the quotient group of algebraic cycles of codimension p on Y modulo

algebraically trivial algebraic cycles is Z.

Let

r∗ : A
p(Y )→ Ap+e(X)

be the push-forward homomorphism induced by the proper morphism r, where

e = dim(X)− dim(Y ) .

Let also

K = Kp
r

be the image of the kernel of the homomorphism r∗ under the isomorphism ψpY
between Ap(Y ) and ApY .

Proposition 4.2.4. Under the above assumptions, there exists an abelian sub-

variety A0 and a countable subset Ξ in A = ApY , such that K is the union of the

shifts of the abelian subvariety A0 by the elements from Ξ in A.

Proof. Fix a polarization Y ⊂ Pm. For any two closed points A and B in Cp
d(Y )

the difference A−B is a codimension p cycle of degree zero on Y . The assumption

that CHp(Y ) splits into Ap(Y ) and Z guarantees that A − B is algebraically

equivalent to zero on Y . Then the map θpd from Cp
d,d(Y ) to CHp(Y ), defined in

Section 4.1, takes its values in Ap(Y ), and we obtain the map θpd from Cp
d,d(Y ) to

Ap(Y ).

Since ψpY is an isomorphism, it follows that Ap(Y ) is weakly representable. In

other words, there exists a nonsingular projective curve C and an algebraic cycle

Z of codimension p on C × Y , such that the homomorphism

[Z]∗ : A
1(C)→ Ap(Y ) ,
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induced by the cycle class [Z], is onto. The Chow scheme C1
d(C) is nothing but

the d-th symmetric power of the curve C. Then we have the map θ1d from the

2-fold product C1
d,d(C) of this symmetric power to A1(C).

If g is the genus of the curve C, then the map θ1g is surjective. Indeed, fix

some point P0 on C and consider the map

θP0,g : C
1
g (C)→ A1(C)

g∑
i=1

Pi 7→
g∑
i=1

[Pi − P0]

where for a point P in C, [P − P0] denote its class in A1(C).Now we have the

following commutative diagram.

C1
g (C) //

θP0,g

##F
FF

FF
FF

FF
FF

FF
FF

FF
F

C1
g,g(C)

θ1g

��
A1(C)

Now we prove that the map θP0,g is onto. So for any z in A1(C), we write z as

[D], where D is a divisor on C representing z. Then θ−1
P0,g

(z) = θ−1
P0,g

([D]) is the

set of all effective divisors
∑g

i=1 Pi of degree g on A1(C) such that

g∑
i=1

Pi − gP0 −D = div(f)

for some nonzero f in k(C). This means that

g∑
i=1

Pi = (gP0 +D) + div(f) .

So this gives rise to an element f in L (D + gP0). On the other hand for any f

in L (D + gP0) we have that

(gP0 +D) + div(f)

is effective, write it as
n∑
i=1

Pi

and we have
n∑
i=1

Pi − gP0 −D = div(f)
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therefore
∑n

i=1 Pi − gP0 is rationally equivalent to D on C. Since D is of degree

zero and rational equivalence preserves degree we get that

n = g .

This gives us that
∑g

i=1 Pi is in the inverse image θ−1
P0,g

([D]). So we get that

θ−1
P0,g

([D]) ∼= L (D + gP0) .

Now by the Riemann-Roch theorem we get that

l(D + gP0)− l(KC − (D + gP0)) = deg(D + gP0)− g + 1

where l(D) is the dimension of the vector space L (D), for a divisor D on C and

KC is the canonical divisor on C. Since deg(D + gP0) = g, we get that

l(D + gP0)− l(KC − (D + gP0)) = 1

so

l(D + gP0) = l(KC − (D + gP0)) + 1 .

So we have the fiber θ−1
P0,g

([D]) is non-empty. So the map θP0,g is surjective.

Therefore it follows that θ1g is surjective.

For any two closed points P and P ′ on C the degree of the cycle classes

prY ∗(pr
∗
C [P ] · [Z]) and prY ∗(pr

∗
C [P

′] · [Z]) is the same. Indeed, for that we observe

that

prY ∗(pr
∗
C [P ] · Z) = Z(P )

and that for any closed points P and P ′ the cycle Z(P )− Z(P ′) is algebraically

equivalent to zero. In terms of Chow varieties we can say that two algebraic cycles

A and B of the same codimension are algebraically equivalent if there exist two

points x0 and x1 on C, positive cycle D on C and a regular morphism f from C

to the Chow scheme Cp(Y ) of Y , such that

f(x0) = A+D and f(x1) = B +D ,

see Theorem 3 in [30]. We know that Cp(Y ) is equal to
⨿

iC
p
i (Y ), where Cp

i (Y )

is the Chow scheme parametrizing the codimension p degree i algebraic cycles on

Y . Since C is connected and f is regular we have that the image of f is contained

in one of Cp
i (Y ). Therefore we get

deg(A+D) = deg(B +D) ,

which gives that

deg(A) = deg(B) .

Since Z(P ) and Z(P ′) are algebraically equivalent we have that

deg(Z(P )) = deg(Z(P ′)) .
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Let d0 be the degree of the cycle class prY ∗(pr
∗
C [P ] · [Z]), for a closed point P

on C, and set d to be the product of d0 with the genus g. Then the surjectivity

of the map θ1g from C1
g,g(C) to A

1(C) and the homomorphism [Z]∗ from A1(C) to

Ap(Y ) give the surjectivity of the map θpd from Cp
d,d(Y ) to Ap(Y ). Indeed, take

an element a in Ap(Y ). Since the homomorphism [Z]∗ is surjective, there exists

b in A1(C) such that [Z]∗(b) = a. Now the map θ1g from C1
g,g(C) to A1(C) is

surjective, that gives us that b can be written as

θ1g

(∑
i

Pi,
∑
j

Qj

)
.

Therefore,

[Z]∗(b) = [Z]∗

(∑
i

[Pi]−
∑
j

[Qj]

)
where [P ] denotes the cycles class in the group A1(C) determined by the point

P . By definition of [Z]∗ the above is∑
i

[prY ∗(Z · pr∗C(Pi))]−
∑
j

[prY ∗(Z · pr∗C(Qj))] .

The degree of prY ∗(Z ·pr∗C(Pi)) is same as the degree of prY ∗(Z ·pr∗C(Qj)). There-

fore, in the above summation, we get that the degree of∑
i

[prY ∗(Z · pr∗C(Pi))]

is same as the degree of ∑
i

[prY ∗(Z · pr∗C(Qj))] .

Now write ∑
i

[prY ∗(Z · pr∗C(Pi))]

as [A]− [B] and ∑
i

[prY ∗(Z · pr∗C(Qj))]

as [C]− [D]. Then we have∑
i

[prY ∗(Z · pr∗C(Pi))]−
∑
j

[prY ∗(Z · pr∗C(Qj))]

is equal to

[A]− [B]− [C] + [D] = [A] + [D]− ([B] + [C]) ,

and by the above degree reason we have

deg(A+D) = deg(B + C) .
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Thus, we have the point (A+D,B+C) on Cp
d,d(Y ) for some d. This proves that

the map θpd is surjective from Cp
d,d(Y ) to Ap(Y ) for some large enough d.

Let K be the kernel of the push-forward homomorphism r∗ from Ap(Y ) to

Ap+e(X). Clearly, K is also the kernel of the push-forward homomorphism r∗
from Ap(Y ) to CHp+e(X). Consider the commutative square

Cp
d,d(Y )

θpd

��

r∗ / / Cp+e
d,d (X)

θp+e
d

��
Ap(Y )

r∗ // CHp+e(X)

where the top homomorphism r∗ is induced by the proper morphism r. Let K ′

be the pre-image of 0 under the composition

θp+ed ◦ r∗ ◦ Z∗

from C1
d,d to A

p+e(X). Since the homomorphisms

θ1d : C
1
d,d(C)→ A1(C)

and

Z∗ : A
1(C)→ Ap(Y )

are both surjective, it follows that the kernel of the push-forward homomorphism

r∗ : A
p(Y )→ Ap+e(X)

is the image of K ′ under the composition

Z∗ ◦ θ1d : C1
d,d(C)→ Ap(Y ) .

Respectively, K = Kp
r is the image of K ′ under the triple composition

C1
d,d(C)

θ1d→ A1(C)
ψ1
C→ A1

C
Z∗→ ApY

By Corollary 4.1.2, (θp+ed )−1(0) is the union of a countable collection of closed

subvarieties in Cp+e
d,d (X). Then so is K ′. As the morphisms in the latter triple

composition are all regular, K is again the union of a countable collection of closed

subvarieties in C1
d,d(C). By Lemma 4.2.2, the set K admits a unique irredundant

decomposition. Let A0 be the unique component of that decomposition passing

through 0, which is an abelian subvariety in the abelian variety A = ApY by

Lemma 4.2.3. Let us show that A0 is the required abelien variety ApY, r from the

statement of the proposition.
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Indeed, for any x in K the set x + A0 is an irreducible Zariski closed subset

in K. Since K is then union

∪x∈K(x+ A0) ,

ignoring each set x+A0 which is a subsets in y+A0 for some y ∈ K, we can find

a subset Ξ = Ξpr in K, such that

K = ∪x∈Ξ(x+ A0)

and for any two elements x, x′ ∈ Ξ the irreducible sets x + A0 and x′ + A0 are

not contained one in another. Take the irredundant decomposition

K = ∪n∈NKn .

It exists by Lemma 4.2.2. Since x + A0 is irreducible, it is contained in Kn for

some n by Lemma 4.2.1. Then A0 ⊂ −x+Kn. Similarly, −x+Kn ⊂ Kl for some

l, so that Kl = A0 by Lemma 4.2.3. This yields x+ A0 = Kn, for each x ∈ Ξ. It

means that the set Ξ = Ξpr is countable.

4.3 The Gysin homomorphism on étale coho-

mology groups

For short, let A = ApY , K = Kp
r and let A0 be as in the proof of Proposition 4.2.4.

Choose an ample line bundle L on the abelian variety A. Let

i : A0 → A

be the closed embedding of A0 into A, and let L0 be the pull-back of L to A0

under the closed embedding i. Define the homomorphism ζ on divisors via the

commutative diagram

A1(A0)

(λL0
)∗

��

ζ // A1(A)

A1(A∨
0 )

i∨∗
// A1(A∨)

λ∗L

OO

Similarly, we define the homomorphism ζZl
on cohomology by means of the com-

mutative diagram

H1
ét(A0,Zl)

ζZl //

λL0∗

��

H1
ét(A,Zl)

H1
ét(A

∨
0 ,Zl)

i∨∗
// H1

ét(A
∨,Zl)

λ∗L

OO
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and analogously for the homomorphism

ζQl/Zl
: H1

ét(A0,Ql/Zl)→ H1
ét(A0,Ql/Zl) .

The homomorphism ζZl
induces the injective homomorphisms

ζQl
: H1

ét(A0,Ql) = H1
ét(A0,Zl)⊗Ql → H1

ét(A0,Ql) = H1
ét(A,Zl)⊗Ql

and

ζZl
⊗Ql/Zl : H1

ét(A0,Zl)⊗Ql/Zl → H1
ét(A0,Zl)⊗Ql/Zl .

Next, since ψpY is an isomorphism, the group Ap(Y ) is weakly representable.

It means that there exists a smooth projective curve Γ, a cycle Z of codimension

p on Γ× Y , and an algebraic subgroup G ⊂ JΓ in the Jacobian variety JΓ, such

that the induced homomorphism

z∗ : JΓ = A1(Γ)→ Ap(Y ) ≃ A

is surjective, and its kernel is the group G. Here z is the cycle class of Z in the

Chow group CHp(Γ× Y ). Furthermore, the class z gives the morphism

z :M(Γ)⊗ Lp−1 →M(Y ) ,

where M(−) is the functor from nonsingular projective varieties over k to (con-

travariant) Chow motives over k, L is the Lefschetz motive and Ln is the n-fold

tensor power of L. Then we just copy the construction from [14].

Namely, fix a point on the curve Γ and consider the induced embedding

iΓ : Γ→ JΓ .

Let

α : JΓ → A

be the projection from the Jacobian JΓ onto the abelian variety

A = JΓ/G .

Let

w = z ◦ (M(α ◦ iΓ)⊗ idLp−1)

be the composition in the category of Chow motives with coefficients in Z. Then
w is a morphism

w :M(A)⊗ Lp−1 →M(Y ) ,

and it induces the homomorphism

w∗ : H
1
ét(A,Ql(1− p))→ H2p−1

ét (Y,Ql)

on the l-adic Weil cohomology groups.
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Proposition 4.3.1. The image of the composition

H1
ét(A0,Ql(1− p))

ζQl→ H1
ét(A,Ql(1− p))

w∗→ H2p−1
ét (Y,Ql)

is contained in the kernel of the Gysin homomorphism

H2p−1
ét (Y,Ql)

r∗→ H
2(p+e)−1
ét (X,Ql) .

Proof. For the proof we will be using Bloch’s l-adic Abel-Jacobi maps. For any

abelian group A, a prime l and positive integer n let Aln be the kernel of the

multiplication by ln endomorphism of A and let A(l) be the l-primary part of A,

i.e. the union of the groups Aln for all n. For any smooth projective variety V

over k, there is a canonical homomorphism

λpl (V ) : CHp(V )(l)→ H2p−1
ét (V,Ql/Zl(p)) ,

constructed by Bloch in [6]. The homomorphisms λpl (V ) are functorial with re-

spect to the action of correspondences between smooth projective varieties over

k. Moreover, the homomorphisms

λ1l (V ) : CH1(V )(l)→ H1
ét(V,Ql/Zl(1))

are isomorphisms, loc.cit.

Now, we have the following commutative diagram

A0(l)

��

i // A(l)

��
A1(A0)(l)

ζ // A1(A)(l)

Since A0 and A are abelian varieties, their Néron-Severi groups are torsion free.

It follows that

CH1(A0)(l) = A1(A0)(l)

and

CH1(A)(l) = A1(A)(l) ,

so that we actually have the isomorphism

λ1l (A0) : A
1(A0)(l)

∼→ H1
ét(A0,Ql/Zl(1)) ,

and the isomorphism

λ1l (A) : A
1(A)(l)

∼→ H1
ét(A,Ql/Zl(1)) .
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Similarly, one has the isomorphisms λ1l (A
∨
0 ) and λ1l (A

∨) for the dual abelian

varieties.

The functorial properties of Bloch’s maps λ1l give that the diagram

A1(A0)(l)

∼λ1l (A0)

��

ζ // A1(A)(l)

λ1l (A) ∼

��
H1
ét(A0,Ql/Zl(1))

ζQl/Zl // H1
ét(A,Ql/Zl(1))

(4.1)

is commutative.

Since the Bloch’s Abel Jacobi maps are functorial with respect to the action

of correspondences between smooth projective varieties over k we get that the

diagrams

A1(A)(l)

λ1l (A)

��

ω∗ // Ap(Y )(l)

λpY (l)

��

H1
ét(A,Ql/Zl(1))

ω∗ // H2p−1
ét (Y,Ql/Zl(p))

and

Ap(Y )(l)

λpl (A)

��

r∗ // Ap+e(X)(l)

λp+e
X (l)

��

H2p−1
ét (Y,Ql/Zl(p))

r∗ // H
2(p+e)−1
ét (X,Ql/Zl(p+ e))

are commutative. They help to observe that the composition r∗ ◦ ω∗ ◦ ζ is zero,

because the abelian variety A sits inside the kernel of the push-forward homo-

morphism r∗. Therefore it follows that

r∗ ◦ ω∗ ◦ ζQl/Zl
= 0

since λ1l (A0) is an isomorphism.

For a smooth projective V over k, one has the homomorphisms

ϱi,jl (V ) : H i
ét(V,Zl(j))⊗Ql/Zl → H i

ét(V,Ql/Zl(j)) ,

with finite kernels and cokernels, considered in [14]. In particular, we have the
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commutative diagram

H1
ét(A0,Ql/Zl(1))

ζQl/Zl // H1
ét(A,Ql/Zl(1))

H1
ét(A0,Zl(1))⊗Ql/Zl

ϱ1,1l (A0)

OO

ζZl⊗Ql/Zl // H1
ét(A,Zl(1))⊗Ql/Zl

ϱ1,1l (A)

OO

(4.2)

Let

σ : A0
∼→ A1(A∨

0 )

and

σ : A
∼→ A1(A∨)

be the autoduality isomorphisms. The above morphism of motives w fromM(A)⊗
L
p−1 to M(Y ) induces the homomorphism

w∗ : A
1(A)→ Ap(Y )

on Chow groups. A straightforward verification shows that the diagram

A1(A)(l)
w∗ // Ap(Y )(l)

A1(A∨)(l)

λ∗L

OO

A(l)σoo

(ψp
Y )−1

OO

(4.3)

is commutative. The homomorphism w∗ on Chow groups and the homomorphism

w∗ : H
1
ét(A,Ql/Zl(1))→ H2p−1

ét (Y,Ql/Zl(p))

induced by w on cohomology fit into the commutative diagram

A1(A)(l)

∼λ1l (A)

��

w∗ // Ap(Y )(l)

λpl (Y )

��

H1
ét(A,Ql/Zl(1))

w∗ // H2p−1
ét (Y,Ql/Zl(p))

(4.4)

The commutativity of the diagrams (4.1), (4.2), (4.3) and (4.4), the definition

of the abelian variety A0 and easy diagram chase over the obvious commutative

diagrams

H1
ét(A,Ql/Zl(1))

ω∗ // H2p−1
ét (Y,Ql/Zl(p))

H1
ét(A,Zl(1))⊗Zl

Ql/Zl
ω∗ //

ϱ1,1l (A)

OO

H2p−1
ét (Y,Zl(1))⊗Zl

Ql/Zl

ϱ2p−1,p
l (Y )

OO
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and

H2p−1
ét (Y,Ql/Zl(p))

r∗ // H
2(p+e)−1
ét (X,Ql/Zl(p+ e))

H2p−1
ét (Y,Zl(p))⊗Zl

Ql/Zl
r∗ //

ϱ2p−1,p
l (A)

OO

H
2(p+e)−1
ét (X,Zl(p+ e))⊗Zl

Ql/Zl

ϱ
2(p+e)−1,p+e
l (X)

OO

show that, since r∗ ◦ ω∗ ◦ ζQl/Zl
= 0, the image of the triple composition

r∗ ◦w∗ ◦ (ζZl
⊗Ql/Zl) : H1

ét(A0,Zl(1))⊗Ql/Zl → H
2(p+e)−1
ét (X,Zl(p+ e))⊗Ql/Zl

is contained in the kernel of the homomorphism

ϱ
2(p+e)−1,p+e
l (X) : H

2(p+e)−1
ét (X,Zl(p+ e))⊗Ql/Zl → H

2(p+e)−1
ét (X,Ql/Zl(p+ e)) ,

that is

ϱ
2(p+e)−1,p+e
l ◦ r∗ ◦ ω∗ ◦ (ζZl

⊗Ql/Zl) = 0 .

By [14] we know that the kernel of ϱ2(p+e)−1,p+e is finite therefore we have that

image of r∗ ◦ ω∗ ◦ (ζZl
⊗ Ql/Zl) is finite. But since it is a finitely generated

Zl-module, we get that

r∗ ◦ ω∗ ◦ (ζZl
⊗Ql/Zl) = 0 .

Finally, look at the commutative diagrams

H1
ét(A0,Zl(1))⊗Ql/Zl

ζZl⊗Ql/Zl // H1
ét(A,Zl(1))⊗Ql/Zl

H1
ét(A0,Ql(p))

ζQl //

OO

H1
ét(A,Ql(1))

OO

H1
ét(A,Zl(1))⊗Ql/Zl

ω∗ // H2p−1
ét (Y,Zl(p))⊗Ql/Zl

H1
ét(A,Ql(1))

OO

ω∗ // H2p−1
ét (Y,Ql(p))

OO

H2p−1
ét (Y,Zl(p))⊗Ql/Zl

r∗ // H
2(p+e)−1
ét (X,Zl(p+ e))⊗Ql/Zl

H2p−1
ét (Y,Ql(p))

r∗ //

OO

H
2(p+e)−1
ét (X,Ql(p+ e))

OO
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Since the étale cohomology groups of smooth projective varieties with Zl-coefficients

are finitely generated Zl-modules, it follows that the image of the triple compo-

sition r∗ ◦ w∗ ◦ ζQl
from H1

ét(A0,Ql(1)) to H
2(p+e)−1
ét (X,Ql(p + e)) is zero, which

finishes the proof of the proposition.

Remark 4.3.2. If dim(Y ) = 1 and p = 1, then w∗ : H1
ét(A,Ql(1 − p)) →

H1
ét(Y,Ql) is an isomorphism by the standard argument. If dim(Y ) = 3 and p = 2,

the homomorphism w∗ between H
1
ét(A,Ql(−1)) and H3

ét(Y,Ql) is an isomorphism

by Lemma 4.3 in [14].

In the applications below we will be dealing with the case whenX is embedded

into a projective space, the dimension ofX is 2p and Y is a nonsingular hyperplane

section of X, so that

dim(Y ) = 2p− 1 and e = 1 .

Assume also that p = 1 or 2, in order to have that w∗ is an isomorphism by

Remark 4.3.2.

If the group H2p+1
ét (X,Ql) vanishes, then the primitive cohomology group

coincides with H2p−1
ét (Y,Ql). This is the case when X is a hypersurface in P2p+1.

If H2p+1
ét (X,Ql) is nonzero, then we need to construct an abelian subvariety A1

in A = ApY , such that the image of the injective homomorphism

H1
ét(A1, Q̄l)→ H1

ét(A, Q̄l) ,

induced by the inclusion A1 ⊂ A, would coincide with the kernel of the composi-

tion of the isomorphism w∗ with the Gysin homomorphism r∗ from H2p−1
ét (Y,Ql)

to H2p+1
ét (X,Ql). Notice that the Gysin homomorphism is surjective by the Lef-

schetz hyperplane section theorem.

If p = 1, then X is a surface and Y is a curve. Then A1
Y can be identified with

the Albanese variety of Y and ψ1
Y : A1(Y )→ A1

Y is the Abel-Jacobi isomorphism

for the curve Y . The group A2(X) also admits a universal regular homomorphism

ψ2
X , which is nothing but the Albanese mapping from A2(X) to the Albenese

variety A2
X of X over k. Let A1 has to be taken to be the connected component

of the kernel of the induced homomorphism from A1
Y to A2

X .

When p = 2 the situation is a bit more difficult. Suppose first that k is

C. Then, for any algebraic variety V over C and any non-negative integer n

the étale cohomology group Hn
ét(V,Ql) is functorially isomorphic to the singular

cohomology group

H∗(V (C),Ql) = H∗(V (C),Q)⊗Ql .

The étale cohomology groups with coefficients in Ql can be further tensored with

the algebraic closure Q̄l of the l-adic field overQl. Fixing an isomorphism between
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Q̄l and C, the étale cohomology groups H∗
ét(−, Q̄l) are functorially isomorphic to

the singular cohomology groups H∗(−,C). The Gysin homomorphism r∗ from

H2p−1(Y,C) to H2p+1(X,C) is a morphism of Hodge structures, so that its kernel

H1 is a Hodge substructure in H2p−1(Y,C). Suppose p = 2. By Remark 4.3.2 the

group H3(Y,C) is isomorphic to the group H1(A,C) via the homomorphism w∗,

and w∗ is obviously a morphism of Hodge structures too. It follows that H1 is of

weight 1. This gives an abelian subvariety A1 in A = A2
Y , where A

2
Y = J2(Y )alg

(see [25]). Using the above functorial isomorphisms between étale and complex

cohomology groups, one can show that the image of the injective homomorphism

from H1
ét(A1,Ql) to H

1
ét(A,Ql), induced by the inclusion A1 ⊂ A, coincides with

the kernel of the composition of the isomorphism

w∗ : H
1
ét(A,Ql(1− p))

∼→ H2p−1
ét (Y,Ql)

with the surjective Gysin homomorphism

r∗ : H
2p−1
ét (Y,Ql)→ H2p+1

ét (X,Ql) .

Let now p = 2 and k be an arbitrary uncountable algebraically closed field of

characteristic 0. In such a situation we still can construct A1 using the fact that

k has an infinite transcendence degree over Q. Let L be the algebraic closure

in k of the minimal field of definition of the varieties X, Y , Γ, A and A0, as

well as the above correspondence z from Γ to Y , so that all these varieties, the

homomorphisms w∗ and r∗ all are coming from the corresponding models

XL , YL , ΓL , AL , A0,L , wL∗ and rL∗

over L. Fixing an embedding of L into C, we can now extend scalars from L to

C getting the varieties

(XL)C , (YL)C , (ΓL)C , (AL)C and (A0,L)C

over C, an similarly for wL∗ and r∗L. Working over C we now can construct the

abelian subvariety (A1)C as above. It has a model over a field extension L′ of L

inside C, whose transcendence degree over L is finite. Since the transcendence

degree of k over Q is infinite, we can embed L′ back into k over L getting the

needed abelian variety A1 over k.

Now again the image of the homomorphism

H1
ét(A1,Ql)→ H1

ét(A,Ql)

coincides with the kernel of the composition of the homomorphism w∗ from

H1
ét(A,Ql(1− p)) to H2p−1

ét (Y,Ql) with the homomorphism r∗ from H2p−1
ét (Y,Ql)

to H2p+1
ét (X,Ql).

The technique used in the proof of Proposition 4.3.1 allows to show that, in

all cases, A0 is a subvariety in A1.

And, certainly, if H2p+1
ét (X,Ql) = 0, then we set A1 = A.
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4.4 Very general versus geometric generic fibre

in a family

In this section, k is an algebraically closed field whose transcendental degree over

the primary subfield is infinite. We will be using the following terminology. If

V is an algebraic scheme over k, a (Zariski) c-closed subset in V is a union of a

countable collection of Zariski closed irreducible subsets in V . A (Zariski) c-open

subset in V is the complement to a c-closed subset in V . A property P of points

in V holds for a very general point on V if there exists a c-open subset U in V ,

such that P holds for each closed point in U .

Let S be an integral affine scheme of finite type over k. Let I(S) be the ideal

in k[x1, · · · , xk] of S and f1, · · · , fn are the generators of the ideal. Since k is

of characteristic zero, the prime subfield of k is Q, then attach the coefficients

of the polynomials f1, · · · , fn to Q, this is a finite extension of Q, which is a

countable subfield of k. Then let S0 be the affine integral scheme defined by the

ideal generated by f1, · · · , fn in k0[x1, · · · , xk], denote this ideal by I(S0). Since

we have that

k0[x1, · · · , xk]/I(S0)⊗k0 k = k[x1, · · · , xk]/I(S)

we get that

S = S0 ×Spec(k0) Spec(k) .

Now let Z be a closed subscheme of S0, and let iZ : Z → S0 be the closed

embedding. Since Z is a closed subscheme in the affine schme S0, it is defined by

an ideal a in k0[S0], since the field k0 is countable and a is finitely generated, we

have that there are only countably many ideals a in k0[S0]. Therefore we have

only countably many closed subschemes Z inside S0. For each Z let UZ be the

complement S0 r im(iZ), Zk = Z ×Spec(k0) Spec(k), (UZ)k = UZ ×Spec(k0) Spec(k).

Let (iZ)k be the pullback of iZ with respect to the extension k over k0. Then

(UZ)k is the complement S r im((iZ)k). Let us consider

U = S r ∪Z im((iZ)k) = ∩Z(UZ)k

where the union is taken over closed subschemes Z such that im((iZ)k) is not

equal to S. Now we prove that this condition is equivalent to the condition that

im(iZ) ̸= S0. Suppose that im((iZ)k) ̸= S, now if im(iZ) = S0, that would

immediately give us that im((iZ)k) = S, that would be a contradiction. Now

suppose the opposite, that im(iZ) ̸= S0, and suppose if possible that im((iZ)k) =

S. That would give us that

Z ×Spec(k0) Spec(k)
∼= S ×Spec(k0) Spec(k) .

Then we have that

k0[S0]/a⊗k0 k = k0[S0]⊗k0 k .
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That is we have

k[S]/a⊗k0 k = k[S]

where a ⊗k0 k denotes the ideal a extended by the scalars in k. Since we have

that

k[S]/a⊗k0 k = k[S]

we have that any prime ideal of k[S] contains the ideal a ×k0 k, since k[S] is an
integral domain, this in particular implies that {0} contains the ideal a ⊗k0 k.
Therefore we have that

a⊗k0 k = {0} .

Since k is of characteristic zero it follows that a = 0, that is a contradiction to the

fact that im(iZ) ̸= S. Now the set U is the complement to the countable union

of Zariski closed subsets, therefore it is c-open (see also the proof of Lemma 2.1

in [39]).

Proposition 4.4.1. For any closed k-point P in U , one can construct a field

isomorphism between k(S) and k, whose value at f ∈ k0[S0] is f(P ).

Proof.

Let P be a closed k-point in the above defined subset U in S, therefore there

exists a morphism

fP : Spec(k)→ S

and its image under the projection

π : S → S0

belong to UZ for every closed subscheme Z of S0. Therefore the image is the

generic point η0 of the scheme S0, since the generic point of an integral scheme

is unique. So there exists a morphism

hP : Spec(k)→ Spec(k0(S0)) = η0

such that we have

π ◦ fP = g0 ◦ hP
where g0 is a morphism from the generic point η0 to S0. In terms of commutative

rings we then have the following commutative diagram. Let evP be the evaluation

at P from k[S] to k.

k[S]
evP // k

k0[S0]

OO

// k0(S0)

ϵP

OO
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Here ϵP is the morphism at the level of commutative rings corresponding to the

morphism

hP : Spec(k)→ Spec(k0(S0)) .

Now we prove that the morphism

k0[S0]→ k[S]

is injective. Write k0[S0] as k[x1, · · · , xk]/I(S0) and k[S] as k[x1, · · · , xk]/I(S).
Therefore the homomorphism

k0[S0]→ k[S]

is given by

f(x1, · · · , xk) + I(S0) 7→ f(x1, · · · , xk) + I(S) .

Now suppose that f(x1, · · · , xk)+I(S) = 0, that is f(x1, · · · , xk) belongs to I(S),
but at the same time we have that the coefficients of f are in k0, therefore we get

that f(x1, · · · , xk) is in I(S0), whence the homomorphism is injective. Therefore

we get that k0[S0] r {0} is a multiplicative system in k[S]. Now we check that

the localization (k0[S0]r {0})−1k[S] is isomorphic to the tensor product

k[S]⊗k0[S0] k0(S0) .

Let us define the homomorphism

Φ : (k0[S0]− {0})−1k[S]→ k[S]⊗k0[S0] k0(S0)

as follows

Φ(a/b) = a⊗ 1

b

on the other hand we define the homomorphism

Ψ : k[S]⊗k0[S0] k0(S0)→ (k0[S0]r {0})−1k[S]

as follows

Ψ(f ⊗ g/h) = fg/h .

It is easy to check that the Φ and Ψ are inverses to each other. This is why

there is a unique universal morphism rings εP from k[S] ⊗k0[S0] k0(S0) to k such

that its restriction to k[S] is evP and its restriction to k0(S0) is ϵP . Our aim

is now to construct an embedding of k(S) into k whose restriction to k0(S0) is

ϵP . Let d be the dimension of S0. By the Noether’s normalization lemma there

exists d algebraically independent elements x1, · · · , xd in k0[S0] such that the

latest ring is integral over k0[x1, · · · , xd]. Therefore it follows that k0(x1, · · · , xd)
is algebraic over k0(S0). Then extending the scalars we get that k[S] is integral

over k[x1, · · · , xd] and k(S) is algebraic over k(x1, · · · , xd). Let bi = evP (xi) for
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i = 1, · · · , d. Since P ∈ U we get that b1, · · · , bd are algebraically independent,

because if they are algebraically dependent then there exists a polynomial f in d

variables such that

f(b1, · · · , bd) = 0

that will imply that (b1, · · · , bd) is in the closed subscheme of S0 defined by f , that

would be a contradiction. Now extend the set {b1, · · · , bd} to a transcendental

basis B of k over k0, now we can choose k0 to be algebraically closed, in that case

we have

k = k0(B) .

Since B is of infinite cardinality so is the set B r {b1, · · · , bd}. Choose and fix a

bijection

ϑP,B : B → B r {b1, · · · , bd}

it gives us a field embedding

θP,B : k = k0(B) ∼= k0(B r {b1, · · · , bd}) ⊂ k0(B)

over k0 such that the set {b1, · · · , bd} is algebraically independent over θP,B(k).

Therefore θP,B induces a field embedding

θP,B : k(x1, · · · , xd)→ k

by sending

xi 7→ bi

for each i. By the commutativity of the above diagram it follows that the restric-

tion of θP,B to k0(x1, · · · , xd) is ϵP . Now we prove that k(S) is the tensor product

of k(x1, · · · , xd) and k0(S0) over k0(x1, · · · , xd). Let us define the homomorphism

on simple tensors and then extend it linearly

Φ : k(x1, · · · , xd)⊗k0(x1,··· ,xd) k0(S0)→ k(S)

by

f(x1, · · · , xd)/g(x1, · · · , xd)⊗ a/b 7→ af(x1, · · · , xd)/bg(x1, · · · , xd)

on the other hand let us consider k(S), consider an element a/b, where a, b belongs

to k[S]. Now it is enough to define the map on k[S] and then extend it in such a

way that it will be a homomorphism from k(S) to the tensor product. For that

let x be an element in k[S] and write it as
∑

i aiyi where y1, · · · , yd is a set of

generators of k[S] over k[x1, · · · , xd] as well as of k0[S0] over k0[x1, · · · , xd]. Then
send x to

∑
ai ⊗ yi. Now define the homomorphism

Ψ : k(S)→ k0(S0)⊗k0(x1,··· ,xd) k(x1, · · · , xd)
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by sending

x/y 7→

(∑
i

ai ⊗ yi)(
∑
j

bj ⊗ yj

)−1

where

x =
∑
i

aiyi, y =
∑
j

bjyj .

Now the homomorphism Φ sends Ψ(x/y) to
∑

i aiyi/
∑
bjyj which is x/y, this

proves that Φ ◦ Ψ = id. Now we have to prove that Ψ ◦ Φ is identity. For that

start with a tensor v in the tensor product k(x1, · · · , xd)×k0(x1,··· ,xd) k0(S0) it will

look like ∑
ai/bi ⊗ fi/gi

this goes to ∑
aifi/bigi

by Φ. Now we apply Ψ we get that

Ψ(aifi/bigi) = Ψ

(
ai

(∑
j

cijyij

)
/bi

(∑
k

dijyij

))

that is equal to (∑
ai ⊗ cijyij

)
·
(∑

bi ⊗ d−1
ij yij

)−1

this is same as ai/bi ⊗ fi/gi so we get that

Ψ ◦ Φ = id .

Therefore we get a uniquely defined field embedding ΘP,B from k(S) to k, which

can be extended to an isomorphism eP : ¯k(S) → k, by the above commutative

diagram we have that

eP (f) = f(P )

for each f in k0[S0].

Remark 4.4.2. It is important to mention that the above isomorphism eP is

non-canonical depends on the choice of the transcendental basis B containing the

quantities b1, . . . , bd.

Let now f : X → S be a flat morphism of schemes over k. Extending

k0 if necessary we may well assume that there exists a morphism of schemes

f0 : X0 → S0 over k0, such that f is the pull-back of f0 under the field extension

from k0 to k. Let η0 = Spec(k0(S0)) be the generic point of the scheme S0,

η = Spec(k(S)) the generic point of the scheme S, and η̄ = Spec(k(S)) be the

geometric generic point of S. Then we also have the corresponding fibres X0,η0 ,

Xη and Xη̄.
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Pulling back the scheme-theoretic isomorphism Spec(eP ) onto the fibres of the

family f we obtain the Cartesian squares

XP
//

��

Spec(k)

Spec(ϵP )

��

XP
//

κP

��

Spec(k)

Spec(eP )

��

and

X0,η0
// η0 Xη̄

// η̄

Since Spec(eP ) is an isomorphism of schemes over η0, the morphism κP is an

isomorphism of schemes over X0,η0 .

For any field F , a scheme Y over F and an automorphism σ of F let Yσ be the

fibred product of Y and Spec(F ) over Spec(F ), with regard to the automorphism

Spec(σ). Let us prove that the scheme Yσ is scheme-theoretically isomorphic to

Y . By the universality of the fibred product there exists a unique morphism α

such that the following diagram commutes

Y

��

++

α

''
Y ×Spec(F ) Spec(F )

��

// Spec(F )

��
Y // Spec(F )

Therefore letting β be the morphism from Y ×Spec(F ) Spec(F ) to Y , we get

that the commutativity of the above diagram gives β ◦α = id. On the other hand

we want to prove that α◦β = id. By the universality we have a morphism γ such

that the following diagram commutes

Y ×Spec(F ) Spec(F )

β

$$

++

γ

**
Y ×Spec(F ) Spec(F )

��

// Spec(F )

��
Y // Spec(F )

Now α ◦β is one such morphism such that β ◦ (α ◦β) = (β ◦α) ◦β = β so the

lower triangle commutes in the above diagram, since Spec(F ) is just one point
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we have that the upper triangle commutes as well. Therefore by the uniqueness

of the morphism γ we can say that α ◦ β = id.

Thus, Yσ is scheme-theoretically isomorphic to Y , and let wσ : Yσ
∼→ Y be the

corresponding isomorphism of schemes over Spec(F σ), where F σ is the subfield

of σ-invariant elements in F .

Let L be a field subextension of k/k0. The projection X → X0 naturally

factors through X0L as follows. By the universality of the fibred product we have

the following diagram

X0 ×Spec(k0) Spec(k)

$$

++**
X0 ×Spec(k0) Spec(L)

��

// Spec(L)

��
X0

// Spec(k0)

where the morphism from X0 ×Spec(k0) Spec(k) to X0 is the projection and the

diagram is commutative because of the fact that Spec(k0) is just one point. This

gives us that that the projection X → X0 factors through X0L = X0 ×Speck0

Spec(L). Composing the embedding of the fibre XP into the total scheme X

with the morphism X →X0L we can consider XP as a scheme over X0L.

If now P ′ is another closed k-point in U , let σPP ′ = eP ′ ◦ e−1
P be the automor-

phism of the field k, and let κPP ′ = κ−1
P ′ ◦κP be the induced isomorphism of the

fibres as schemes over Spec(kσPP ′ ). In these terms, (XP )σPP ′ = XP ′ , the isomor-

phism wσPP ′ : XP ′
∼→XP is over X0×Spec(k0) Spec(k

σPP ′ ), and wσPP ′ = κP ′P . To

see that we just need to use Proposition 4.4.1 and pull-back the scheme-theoretic

isomorphisms between points on S to isomorphisms between the corresponding

fibres of the morphism f : X → S.

Remark 4.4.3. The assumption that S is affine is not essential, of course. We can

always cover S by open affine subschemes, construct the system of isomorphisms

κ in each affine chart and then construct “transition isomorphisms” between very

general fibres in a flat family over an arbitrary integral base S.

Let now f : X → S and g : Y → S be two flat morphisms of schemes over

k, and let r : Y →X be a morphism of schemes over the base S, i.e. f ◦ r = g.

Extending k0 appropriately we may assume that there exist models f0, g0 and h0
over k0 of the morphisms f , g and h respectively, such that f0 ◦ r0 = g0. Then,
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for any closed k-point P in U , the diagram

YP

κP

��

rP // XP

κP

��
Yη̄

rη̄ // Xη̄

(4.5)

is commutative, where rP and rη̄ are the obvious morphisms on fibres induced

by the morphism r. Then, of course, the isomorphisms κPP ′ commute with the

morphisms rP and rP ′ , for any two closed k-points P and P ′ in U . Cutting out

more Zariski closed subsets from U we may assume that the fibres of the families

f and g over the points from U are smooth.

Assume now that k is, moreover, uncountable of characteristic 0, and that

Assumptions (A) and (B) are satisfied for the geometric generic fibre Yη̄ and the

fibre YP for each closed point P in U . To simplify our notation, let Aη̄ be the

abelian variety ApYη̄
, let AP be the abelian variety ApYP

, let ψη̄ be the universal

regular isomorphism ψpYη̄
and let ψη̄ be the universal regular isomorphism ψpYη̄

, in

terms of Section 4.2.

Lemma 4.4.4. The scheme-theoretic isomorphism κP : YP → Yη̄, constructed

in Section 4.4, preserves the algebraic and rational equivalence of algebraic cycles.

Proof. As we have already explained in Section 4.1, if α : k
∼→ k′ is an isomorphism

of fields, the functorial bijections θ from the representation of Chow monoids by

Chow schemes commute by means of the isomorphisms of monoids and Hom-sets

induced by the isomorphism Spec(α). To prove that we have to show that the

following diagram is commutative

C p(Yη̄ ×η̄ Cη̄/Cη̄)

��

θYη̄ (Cη̄)
// Homη̄(Cη̄, C

p(Yη̄/η̄))

��
C p(YP ×Spec(k) C/C)

θYP
(C)

// HomSpec(k)(C,C
p(YP/Spec(k)))

In ones turn, to show that it is enough to show that the following diagram is

commutative, because there is a natural map of abelian monoids C eff (X ×S/S)
to Hom(S, Sym(X)), see [34]

C p
d (Yη̄ ×η̄ Cη̄/Cη̄)

��

θYη̄ (Cη̄)
// Homη̄(Cη̄, Sym

d(Yη̄))

��

C p
d (YP ×Spec(k) C/C)

θYP
(C)

// HomSpec(k)(C, Sym
d(YP ))
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Let us consider a integral subscheme Z in Yη̄×η̄Cη̄ such that the projection from

Z to S is finite and surjective of degree d. Now we consider the morphism

sZ/Cη̄ ,d : Cη̄ → Symd(Z/Cη̄)

and consider the embedding

Symd(Z/Cη̄)→ Symd(Yη̄ ×η̄ Cη̄/Cη̄) ∼= Symd(Yη̄)

this gives us θYη̄(Z).

Now consider the following isomorphism

k ∼= ¯k(S)

that gives us an isomorphism

C → Cη̄ ,

and

YP → Yη̄ .

Therefore composing we get a morphism

C → Cη̄ → Symd(Z)→ Symd(Yη̄)→ Symd(YP ) .

On the other hand we have

C → Symd(ZP )→ Symd(YP ) ,

here ZP is the pullback of Z, with respect to the morphism

Spec(k)→ Spec(k(S)) .

Now to prove the required commutativity we have to prove that the above two

compositions are the same. That is we have to prove that the two following

diagrams are commutative.

Symd(Z)

��

// Symd(Yη̄ × Cη̄)

��

Symd(ZP ) // Symd(YP × CP )

C

��

// Symd(ZP )

Cη̄ // Symd(Z)

OO
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The commutativity of the first diagram follows from the commutativity of the

diagram.
Z

��

// Yη̄ × Cη̄

��
ZP // YP × CP

So we only have to show the commutativity of the second diagram

C

��

// Symd(ZP )

Cη̄ // Symd(Z)

OO

to do that we reduce everything to the affine case, write C = Spec(B) and

ZP = Spec(A) then we are reduced to show that the following diagram in the

category of commutative rings is commutative.

B ⊗k ¯k(S)

��

Symd(A⊗k ¯k(S))oo

B Symd(A)

OO

oo

Now consider the element a1⊗· · ·⊗ ad in Symd(A). The right vertical homomor-

phism sends it to

(a1 ⊗ 1)⊗ · · · ⊗ (ad ⊗ 1)

and the top horizontal morphism sends it to

(a1 ⊗ 1) ∧ · · · ∧ (ad ⊗ 1)

now we have to prove that this is equal to

(a1 ∧ · · · ∧ ad)⊗ 1 ,

then we will be done with the commutativity of the above diagram. To show that

we show,

(a1 ⊗ 1)⊗ · · · ⊗ (ad ⊗ 1)− (a1 ⊗ · · · ⊗ ad)⊗ 1 = 0

but that follows from writing 1 = 1 ⊗ · · · ⊗ 1 for d-many times. Therefore we

have the commutativity of the required diagram.
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In particular, if k′ = k(S) and α = e−1
P , the bijections θYη̄ over k(S) commute

with the bijections θYP
over k. The commutativity for the sections of the corre-

sponding pre-sheaves on an algebraic curve C over k and its pull-back C ′ over k′

gives the first assertion of the lemma.

If C = P1, we get the second one.

By Lemma 4.4.4, the isomorphism κP induces the push-forward isomorphism

of abelian groups κP ∗ : A
p(YP )→ Ap(Yη̄). Let κP : AP → Aη̄ be the composition

ψpη̄ ◦κP ∗ ◦ (ψpP )−1. We will be saying that Assumption (A) is satisfied in a family,

for the fibres YP at the closed points P in U , if there exists an abelian scheme A

over a Zariski open subscheme W ′ in some finite extension S ′ of S, such that the

fibre AP of this abelian scheme at P ′ ∈ W ′ over P ∈ U is AP , the fibre Aη̄ at the

geometric generic point η̄ of the family A → W ′ is Aη̄, and the corresponding

scheme-theoretic isomorphism

κP ′∗ : AP
∼→ Aη̄

coincides with the above constructed isomorphism κP , for each closed point P in

U . This gives, in particular, that κP is a regular morphism of schemes, for each

P in U .

Notice that the satisfaction of Assumption (A) in a family can be always

achieved provided Assumption (A) holds for the geometric generic fibre Yη̄. In-

deed, as ψpY : Ap(Y ) → ApY is an isomorphism, for Y = Yη̄, the group Ap(Y ) is

weakly representable. As we mentioned above, in such a situation we can choose

a smooth projective curve Γ over η̄ and a cycle Z on Γ× Y inducing a surjective

homomorphism from A1(Γ) onto Ap(Y ) over η̄. Then ψpY can be fully described

geometrically in terms of the Jacobian JΓ of the curve curve Γ and the cycle Z.

Spreading out Γ, JΓ and Z over an open subscheme W ′ in a suitable finite ex-

tension S ′ of S, and then specializing the relative construction to a closed point

P of the c-open set U , we get weak representability of Ap(YP ) provided by the

specializations of the spread of the cycle Z to P .

Let us give more details on it. By Assumption (A) we get that there exists a

regular isomorphism

ψpY : Ap(Y )→ ApY ,

where ApY is an abelian variety. By definition of weak representability we get that

there exists a smooth projective curve Γ over η̄ and a cycle Z supported on Γ×Y
inducing a surjective homomorphism

Z∗ : A
1(Γ)→ Ap(Yη̄) .

Since A1(Γ) is isomorphic to the Jacobian JΓ and ψpY is regular we get that the

ψpY ◦ Z∗ is regular.
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Now let L be the finitely generated field over k(S), over which Γ, JΓ, Z are

all defined. Then consider the spreads of

Γ , JΓ and Z

over some open subscheme W ′ of S ′, where

k(S ′) = L .

Let us denote these spreads by G , J and Z respectively.

Now consider the Cartesian squares

Yη̄

��

// {η̄}

r

��
YW ′ //W ′

and the Cartesian square

YP

��

// Spec(k)

��
YW ′ //W ′

By the universality of fibred products we get following the commutative diagram

YP

��

''!!
Yη̄

��

// η̄

��
YW ′ //W ′

That gives us the commutative triangle

YP
//

  B
BB

BB
BB

BB
BB

BB
BB

BB
Yη̄

��
YW ′
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Now we have the following commutative diagram at the level of Chow groups.

A1(Γη̄)
Zη̄∗ // Ap(Yη̄)

A1(G )
Z∗ //

OO

��

Ap(YW ′)

f∗η̄

OO

f∗P

��
A1(GP )

ZP∗ // Ap(YP )

It is easy to show that the two squares present in the above rectangle are com-

mutative and that the group Ap(YW ′) is generated by the image of Z∗ and the

kernel of f ∗. Now we have to prove that the homomorphism ZP∗ is surjective

from A1(GP ) to Ap(YP ). Since the triangle

Ap(YW ′) //

$$H
HH

HH
HH

HH
HH

HH
HH

HH
HH

Ap(Yη̄)

��
Ap(YP )

is commutative and Ap(YW ′)→ Ap(Yη̄) is surjective we have that

Ap(YW ′)→ Ap(YP )

is surjective. So take b in Ap(YP ), then there exists a in Ap(YW ′) such that

f ∗
P (a) = b

Now we can write a as Z∗(c) + d where d belongs to the kernel of f ∗
η̄ . Let e be

the image of c under the homomorphism

A1(G )→ A1(GP ) .

Now since

Ap(YW ′) //

$$H
HH

HH
HH

HH
HH

HH
HH

HH
HH

Ap(Yη̄)

��
Ap(YP )
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is commutative we get that

f ∗
P (d) = 0

and then by the commutativity of the lower part of the above rectangle it follows

that

ZP∗(e) = b .

So the homomorphism ZP∗ is surjective. Considering the spread of the abelian

variety Aη̄, we get an abelian scheme A over W ′ and since Aη̄ ∼= AP for a closed

point P in U and also

Aη̄
∼= AP

which gives us that

AP
∼= AP .

This gives us Assumption (A) satisfied in a family.

Thus, in order to have Assumption (A) in a family, all we need is to assume

that it holds for the geometric generic fibre Yξ̄. It is essential that we only take

care about the closed points of the c-open set U , for which we have the scheme-

theoretical isomorphisms κP . If we choose a closed point P beyond U , then weak

representability cannot be guaranteed.

Similarly, if we assume that Assumption (B) is satisfied for the geometric

generic fibre Yη̄, then it will be also satisfied for each closed point P in U . This

can be proven by means of the argument used in the proof of Lemma 4.4.4.

Indeed, since the condition B is satisfied for the geometric generic fiber we

have that, the quotient group of algebraic cycles of codimension p on Yη̄ modulo

the algebraically trivial algebraic cycles is Z. Consider P in U and consider an

algebraic cycle on YP such that the degree of the cycle is zero. Then we have

to prove that the cycle is algebraically trivial. Since YP is isomorphic to Yη̄ as

schemes over η̄ we have that the group of algebraic cycles of codimension p on YP

is isomorphic to group of algebraic cycles of codimension p on Yη̄, and the same

for the algebraically trivial cycles of codimension p on YP and Yη̄. Therefore the

degree zero algebraic cycles on YP correspond to the degree zero algebraic cycles

on Yη̄.

But since the group of algebraic cycles modulo the group of algebraically

trivial algebraic cycles is Z we have that degree zero algebraic cycles on Yη̄ are

algebraically trivial. But by Lemma 4.4.4 the morphism κP preserves rational

and algebraic equivalence.

Therefore we get that the degree zero algebraic cycles on YP are algebraically
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trivial. This follows from the commutativity of the following diagram.

C p(Yη̄ ×η̄ Cη̄/Cη̄)

��

θYη̄ (Cη̄)
// Homη̄(Cη̄, C

p(Yη̄/η̄))

��
C p(YP ×Spec(k) C/C)

θYP
(C)

// HomSpec(k)(C,C
p(YP/Spec(k)))

Next, the commutative diagram (4.5) gives the commutative diagram

Ap(YP )

κP ∗

��

rP ∗ // Ap+e(XP )

κP ∗

��
Ap(Yη̄)

rη̄∗ // Ap+e(Xη̄)

(4.6)

where

e = dim(Xη̄)− dim(Yη̄) .

To shorten notation further, let

AP,0

be the abelian subvariety in AP and

Aη̄,0

the abelian subvariety in Aη̄, such that, by Proposition 4.2.4, the image

KP

of the kernel of the push-forward homomorphism

rP ∗ : A
p(YP )→ Ap+e(XP )

under the isomorphism

ψP : Ap(YP )
∼→ AP

is the union of a countable collection of shifts of AP,0 inside AP .

Similarly, the image

Kη̄

of the kernel of the homomorphism rη̄∗ under the isomorphism ψη̄ is the union of

a countable collection of shifts of the abelian subvariety Aη̄,0 in Aη̄.

Proposition 4.4.5. Suppose that Assumption (A) is satisfied for the fibre Yη̄.

Then, for any closed point P in U , κP (AP,0) = Aη̄,0.
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Proof. Let ΞP be the countable subset in AP and Ξη̄ the countable subset in Aη̄,

such that

KP = ∪x∈ΞP
(s+ AP,0)

and

Kη̄ = ∪x∈Ξη̄(x+ Aη̄,0)

in AP and Aη̄ respectively (see Proposition 4.2.4). Then

κP (KP ) = κP (∪x∈ΞP
(x+ AP,0)) = ∪x∈ΞP

(κP (x) + κP (AP,0)) .

The definition of κP and the commutative diagram (4.6) give that

κP (KP ) = Kη̄ .

Therefore, the union

∪x∈ΞP
(κP (x) + κP (AP,0))

coincides with the union

∪x∈Ξη̄(x+ Aη̄,0)

inside the abelian variety Aη̄.

Since Assumption (A) is satisfied for the fibre at η̄, it is satisfied in a family.

Therefore, the homomorphisms κP are regular morphisms of schemes, whence

κP (AP,0) is a Zariski closed subset in Aη̄.

Since κP (AP,0) is a subgroup in Aη̄, it is an abelian subvariety in Aη̄. Lemma

4.2.2 and Lemma 4.2.3 finish the proof.

Remark 4.4.6. Assume that p = 1 or 2, and e = 1. Let Aη̄,1 be the abelian

subvariety in Aη̄ constructed as in Section 4.3. For each closed point P in U one

can define AP,1 to be the pre-image of Aη̄,1 under the isomorphism κP . Proposition

4.4.5 gives that AP,0 is an abelian subvariety in AP,1. If

H2p+1
ét (Xη̄,Ql) = 0

then Aη̄,1 = Aη̄ and AP,1 = AP for each closed point P in U .

4.5 Cycles on hyperplane sections via étale mon-

odromy

Let k be an uncountable algebraically closed field of characteristic zero. Let

d = 2p and let X be a nonsingular d-dimensional projective variety over the

ground field k. Fix a closed embedding X ⊂ Pm, such that X is not contained

in a smaller linear subspace in Pm. For any closed point t in the dual projective
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space Pm∨, let Ht be the corresponding hyperplane in Pm and let Xt be the

intersection of X with Ht. Let

H = {(P,H) ∈ Pm × Pm∨ | P ∈ H}

be the universal hyperplane, and let p1 and p2 be the projections of H on Pm

and Pm∨ respectively.

Let

Y →X

be the pull-back of p1 with respect to the embedding X ⊂ Pm, and let

f : Y → Pm∨

be the composition of the closed embedding of Y into H with the projection p2.

For any morphism of schemes

D → Pm∨

let

HD → D

be the pull-back of p2 with respect to the morphism D → Pm∨, let YD be the

fibred product of Y and HD over the universal hyperplane H , and let

fD : YD → D

be the induced projection, i.e. the composition of the closed embedding of YD

into HD and the morphism HD → D. Let also XD → D be the pull-back of

trivial family

XPm∨ = X ×Spec(k) Pm∨ → Pm∨

with respect to the morphism D → Pm∨.

Now, choose D to be a projective line in Pm∨, such that the morphism fD is

a Lefschetz pencil of the variety X . Let k(D) be the function field of D,

η = Spec(k(D))

be the generic point of D, k(D) be the algebraic closure of k(D) and

η̄ = Spec(k(D))

be the geometric generic point of D.

Let Y be the geometric generic fibre Yη̄ of the morphism fD : YD → D, and

let X be the geometric generic fibre of the morphism XD → D.

The universal morphism YD →XD is over D, so that it induces the morphism

r : Y = Yη̄ → X = Xη̄
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over the geometric generic point η̄. The morphism r is a closed imbedding of the

scheme Y into the scheme X.

Assume that the variety Y = Yη̄ satisfies Assumptions (A) and (B), being

considered over k(D). That is, the universal homomorphism ψpY = ψpYη̄
exists

and is an isomorphism of abelian groups, and the quotient-group of algebraic

cycles of codimension p on Y modulo algebraically trivial algebraic cycles is Z.
Let

r∗ : A
p(Y )→ Ap+1(X)

be the push-forward homomorphism induced by the proper morphism r, and let

Kp
r be the image of the kernel of r∗ under the isomorphism ψpY .

Let also

Aη̄

be the abelian variety

ApY = ApYη̄

and let

Aη̄,0 and Aη̄,1

be the abelian subvarieties in Aη̄, as in the previous section.

The image of the composition of the homomorphism

ζQl
: H1

ét(Aη̄,0,Ql(1− p))→ H1
ét(Aη̄,Ql(1− p))

with the homomorphism

w∗ : H
1
ét(Aη̄,Ql(1− p))→ H2p−1

ét (Y,Ql)

is contained in the kernel of the Gysin homomorphism

r∗ : H
2p−1
ét (Y,Ql)→ H2p+1

ét (Y,Ql)

due to Proposition 4.3.1. This is why

Aη̄,0 ⊂ Aη̄,1 ⊂ Aη̄ .

Let now L be the minimal subextension of k(D) in k(D), such that the abelian

varieties

Aη̄,0 , Aη̄,1 and Aη̄

are all defined over L. Then L is finitely generated and algebraic of finite degree

n over k(D). Let D′ be an algebraic curve, such that

L = k(D′)

and the embedding of k into k(D) is induced by a generically of degree nmorphism

from D′ onto D.
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Since the closed embedding of

Aη̄,0 ⊂ Aη̄,1

and

Aη̄,1 ⊂ Aη̄

are now defined over L, there exist a Zariski open subset U ′ in D′, spreads

Aη̄,0 , Aη̄,1 and Aη̄

of Aη̄,0, Aη̄,1 and Aη̄ respectively over U ′, and morphisms

Aη̄,0 → Aη̄,1

and

Aη̄,1 → Aη̄

over U ′, such that, when passing to the fibres at the geometric generic point η̄,

we obtain the closed embeddings of Aη̄,0 into Aη̄,1 and Aη̄,1 into Aη̄ over k(D).

Let α be the morphism from A onto U ′, and let α0 and α1 be the morphism

from A0 and, respectively, A1 onto U
′. Since A is a spread of Aη̄ over U

′ and Aη̄
is a projective variety over L = k(D′), the morphism α is locally projective and,

therefore, proper. Similarly, the morphisms α0 and α1 are proper. Cutting more

points from D′ we may assume that the morphisms α, α0 and α1 are all smooth

over U ′.

Let

η′ = Spec(k(D′))

be the generic point of D′, let

η̄′ = η̄

be the geometric generic point of D′, let

π1(U
′, η̄)

be the étale fundamental group of D′ pointed at η̄, and let

πtame
1 (U ′, η̄)

be the corresponding tame fundamental group. For any scheme S and non-

negative integer n let (Z/ln)S be the constant sheaf on S associated to the group

Z/ln.
Since the morphisms α0, α1 and α are smooth and proper, the higher direct

images

R1α0∗(Z/ln)A0 , R1α1∗(Z/ln)A1 and R1α∗(Z/ln)A
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are locally constant by Theorem 8.9, Ch. I in [12]. Then the fibres

(R1α0∗(Z/ln)A0)η̄ , (R1α1∗(Z/ln)A1)η̄ and (R1α∗(Z/ln)A )η̄

of these sheaves at the geometric generic point η̄ are finite continuous π1(U
′, η̄)-

modules, see Proposition A I.7 in loc. cit. The proper base change (see, for

example, Theorem 6.1′ on page 62 in loc. cit.) gives that

(R1α0∗(Z/ln)A0)η̄ is H1
ét(A0η̄,Z/ln) ,

(R1α1∗(Z/ln)A1)η̄ is H1
ét(A1η̄,Z/ln)

and

(R1α∗(Z/ln)A )η̄ is H1
ét(Aη̄,Z/ln) .

Then we obtain that π1(U
′, η̄) acts continuously on

H1
ét(A0η̄,Z/ln) , H1

ét(A1η̄,Z/ln) and H1
ét(Aη̄,Z/ln) .

Passing to limits on n and then tensoring with Ql we then obtain that the

étale fundamental group π1(U
′, η̄) acts continuously on

H1
ét(A0η̄,Ql) = H1

ét(Aη̄,0,Ql) ,

H1
ét(A1η̄,Ql) = H1

ét(Aη̄,1,Ql)

and

H1
ét(Aη̄,Ql) = H1

ét(Aη̄,Ql) .

The homomorphism ζQl
from H1

ét(Aη̄,0,Ql) to H
1
ét(Aη̄,Ql) is the composition

of the obvious homomorphisms ζ ′Ql
from H1

ét(Aη̄,0,Ql) to H1
ét(Aη̄,1,Ql) and ζ ′′Ql

from H1
ét(Aη̄,1,Ql) to H1

ét(Aη̄,Ql). The action of π1(U
′, η̄) naturally commutes

with both ζ ′Ql
and ζ ′′Ql

.

Without loss of generality, we may assume that U ′ is the pre-image of a Zariski

open subset U in D and all the fibres of the Lefschetz pencil fD : YD → D over

the closed points of U are smooth.

Let

fD′ : YD′ → D′

be the pull-back of the Lefschetz pencil fD with respect to the morphism D′ → D,

and let

fU ′ : YU ′ → U ′

be the pull-back of fD′ with respect to the open embedding of U ′ to D′.

Applying the same arguments to the morphism fU ′ , we obtain the continuous

action of the étale fundamental group π1(U
′, η̄) on the group H2p−1

ét (Yη̄,Ql), and

it is well known that this action is tame, in the sense that it factorizes through

the surjective homomorphism from π1(U
′, η̄) onto πtame

1 (U ′, η̄).
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For each closed point s in the complement D r U let δs be the unique up-to

conjugation vanishing cycle in H2p−1
ét (Yη̄,Ql), corresponding to the point s in the

standard sense (see Theorem 7.1 on page 247 in [12]), and let E be the Ql-vector

subspace in H2p−1
ét (Yη̄,Ql) generated by all the elements

δs , s ∈ D r U .

In other words, E is the space of vanishing cycles in H2p−1
ét (Yη̄,Ql). One

can show that E coincides with the kernel of the Gysin homomorphism r∗ from

H2p−1
ét (Yη̄,Ql) to H

2p+1
ét (Xη̄,Ql), see Section 4.3 in [10].

In what follows we will be using the étale l-adic Picard-Lefschetz formula

for the monodromy action. For each s ∈ D r U let π1,s be the so-called tame

fundamental group at s, which is a subgroup in πtame
1 (U, η̄) uniquely determined

by the point s up to conjugation in πtame
1 (U, η̄).

In terms of [12], π1,s is the image of the homomorphism

γs : Ẑ(1)→ πtame
1 (U, η̄) ,

where Ẑ(1) is the limit of all groups µn, and µn is the group of n-th roots of unity

in the algebraically closed field k(U) whose exponential characteristic is 1.

The tame fundamental group πtame
1 (U, η̄) is generated by the subgroups π1,s.

If u is an element in Ẑ(1), let ū be the image of u in Zl(1). If now v is an element

in the Ql-vector space H
2p−1
ét (Yη̄,Ql) the Picard-Lefschetz formula says

γs(u)x = x± ū⟨x, δs⟩δs . (4.7)

Since present we will be assuming that either p = 1 or 2.

Proposition 4.5.1. Under the above assumptions, either Aη̄,0 = 0 or Aη̄,0 = Aη̄,1.

Proof. By Proposition 4.3.1 and the fact that the space E of vanishing cycles

coincides with the kernel of the Gysin homomorphism r∗ from H2p−1
ét (Yη̄,Ql) to

H2p+1
ét (Xη̄,Ql), we see that the image of the composition

H1
ét(Aη̄,0,Ql(1− p))

ζQl→ H1
ét(Aη̄,Ql(1− p))

w∗→ H2p−1
ét (Yη̄,Ql)

is contained in E. The homomorphism ζQl
is injective and compatible with the

action of π1(U
′, η̄). Since p ≤ 2, the homomorphism w∗ is bijective, see Remark

4.3.2. Then

E ≃ H1
ét(Aη̄,1,Ql(1− p))

via ζ ′′Ql
and w∗.

Since the variety Y = Yη̄ satisfies Assumption (A), there exists a nonsingular

projective curve Γ and an algebraic cycle Z on Γ× Y over η̄, such that the cycle
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class z of Z induces the surjective homomorphism z∗ from A1(Γ) to Ap(Yη̄), whose

kernel is G. The homomorphism

w∗ : H
1
ét(Aη̄,Ql(1− p))→ H2p−1

ét (Yη̄,Ql)

is then induced by the composition of the embedding of the curve Γ into its

Jacobian JΓ over η̄, the quotient map from JΓ onto the abelian variety A = JΓ,

also over η̄, and the homomorphism induced by the correspondence Z (see Section

4.2).

Spreading out the morphisms Γ → JΓ and JΓ → A, as well as the cycle X,

over a certain Zariski open subset in D′, we can achieve that the homomorphism

w∗ is compatible with the action of the fundamental group π1(U
′, η̄).

Indeed, let Z be an algebraic cycle on Γ× Y and

Z∗ : JΓ → Ap(Y )

is onto, now we have the universal regular homomorphism

ψpY : Ap(Y )→ A

we get that ψpY ◦ Z∗ is a regular map, we denote it by Z∗ again.

We have an embedding Γ → JΓ and the morphism Z∗ : JΓ → A induced by

the cycle Z on Γ× Y .

Let

Γ , JΓ , A and Z

be all defined over some finite extension L of k(D). Choose a curve D′ such that

k(D′) = L

and

D′ → D

is finite.

Let U ′ be a Zariski open set in D′ and we spread Γ, JΓ, A and Z over U ′. Let

C , J , A and Z

denote the corresponding spreads. Then we have the following morphisms

α : C × Y → C

β : C →J

γ : J → A .

Now consider the constant sheaves

(Z/ln)A , (Z/ln)J and (Z/ln)C
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on A , J and C respectively. Let also

p1 , p2 , p3 and p4

denote the morphisms from A , J , C and C × Y to U ′ respectively.

Then we have

R1(γ∗) : R1p1∗(Z/ln)A → R1p2∗(Z/ln)J

R1(β∗) : R1p2∗(Z/ln)J → R1p3∗(Z/ln)C

R1(α∗) : R1p3∗(Z/ln)C → R1p4∗(Z/ln)C×Y .

Composing we get

R1((γ ◦ β ◦ α)∗) : R1p1∗(Z/ln)A → R1p4∗(Z/ln)C×Y

Passing to the stalks of the above higher direct image sheaves we get that

R1((γ ◦ β ◦ α)∗)η̄ : (R1p1∗(Z/ln)A )η̄ → (R1p4∗(Z/ln)C×Y )η̄ .

Since we have an equivalence of categories between locally constant sheaves on U ′

and finite continuous π1(U
′η̄) modules we get that the morphism R1((γ ◦β ◦α)∗)

of sheaves induces the morphism R1((γ ◦ β ◦ α)∗)η̄ of π1(U
′, η̄) modules. Now let

us fix a point p0 on Γ and consider the embedding

i : Y → Γ× Y

given by

y 7→ (p0, y)

this can be spread into a morphism from Y to C×Y , then we have the morphism

R1i∗η̄ : H
1
ét(Γ× Y,Ql)→ H1

ét(Y,Ql)

of π1(U
′, η̄) modules. Now by Poincare duality we get that

H1
ét(Y,Ql) ∼= HomQl

(H2p−1(Y,Ql(p− 1)),Ql)

that is isomorphic to

H2p−1
ét (Y,Ql(p− 1))

and we get that the morphism

R1i∗η̄ : H
1
ét(Γ× Y,Ql)→ H2p−1

ét (Y,Ql(p− 1))

is a morphism of π1(U
′, η̄) modules and composing R1i∗η̄ with R1((γ ◦ β ◦ α)∗)η̄

we get a morphism of π1(U
′, η̄) modules from

H1
ét(A,Ql)→ H2p−1

ét (Y,Ql(1− p))
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and tensoring both sides in the above we get that

H1
ét(A,Ql(1− p))→ H2p−1

ét (Y,Ql)

which is a morphism of π1(U
′, η̄) modules.

Since the homomorphism w∗ is compatible with the action of the fundamental

group π1(U
′, η̄), this gives that the composition w∗ ◦ ζQl

is an injection of the

π1(U
′, η̄)-module H1

ét(Aη̄,0,Ql(1−p)) into the π1(U ′, η̄)-module of vanishing cycles

E. Let E0 be the image of this injection.

Since U ′ is finite of degree n over U , the group π1(U
′, η̄) is a subgroup of finite

index n in the étale fundamental group π1(U, η̄).

This is because of the following. Shrinking U we can assume that the mor-

phism U ′ → U is smooth and also it is finite hence quasi-finite, therefore it is

étale. Now take a Galois cover Y → U ′ then composing it with U ′ → U we get

a finite étale, Galois cover Y → U . Now the group Aut(Y |U ′) is a subgroup of

Aut(Y |U) and since Y → U and Y → U ′ are Galois covers we get that

Aut(Y |U ′) = m , Aut(Y |U) = n .

And we have that Aut(Y |U ′) is a finite index subgroup of Aut(Y |U). Now we have

to prove that π1(U
′, η̄) is a finite index subgroup of π1(U, η̄), to do that it is enough

to prove that
∏

Y Aut(Y |U ′) is a finite index subgroup of
∏

Y Aut(Y |U). But this
follows from the fact that Aut(Y |U ′) is a finite index subgroup of Aut(Y |U).

The group π1(U, η̄) acts continuously on E by the standard étale monodromy

theory. Let us use the Picard-Lefschetz formula in order to show that E0 is a

πtame
1 (U, η̄)-equivariant subspace in E. Obviously, it is enough to show that for

each element γs(u) in π
tame
1 (U, η̄) and any element x in E0 the element γs(u)x is

again in the space E0.

Indeed, since ⟨δs, δs⟩ = 0, the Picard-Lefschetz formula (4.7) and easy induc-

tion give that (γs(u))
mx = x±mū⟨x, δs⟩δs for a natural number m, whence

ū⟨x, δs⟩δs =
1

m
((γs(u))

mx± x) .

When m is the index of π1(U
′, η̄) in π1(U, η̄), then (γs(u))

m sits in the subgroup

π1(U
′, η̄), so that the right hand side of the latter formula is an element of E0.

Applying the Picard-Lefschetz formula again, we see that γs(u)x is in E0.

Let us give more detail on it. The group π1(U, η̄) acts tamely onH2p−1
ét (Yη̄,Ql),

that is the action of the étale fundamental group factors through the action of the

tame fundamental group πtame
1 (U, η̄). Now we have to show that E0 is π

tame(U, η̄)

equivariant. That is it is enough to show that for each element γs(u) in π
tame
1 (U, η̄)

and any element x in E0 the element γs(u)(x) is again in E0. By the Picard

Lefschtez formulae we have that

(γs(u))
mx = x±mū⟨x, δs⟩δs .
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Now since the fundamental group π1(U, η̄) acts tamely, we have for an element a

in π1(U, η̄) such that its image under the natural homomorphism from π1(U, η̄)

to πtame
1 (U, η̄) is γs(u). Also we have that

am · x = (γs(u))
m · x

taking m to be index of π1(U
′, η̄) we get that am is in π1(U

′, η̄) and also we have

that E0 is π1(U
′, η̄) invariant. Therefore we get that

(γs(u))
m · x− x

is in E0, whence we get that E0 is πtame
1 (U, η̄) invariant.

Thus, E0 is a submodule in the πtame
1 (U, η̄)-module E. Since E is known to

be an absolutely irreducible (see, for example, Corollary 7.4 on page 249 in [12]),

we see that either E0 = 0 or E0 = E. In the first case

H1
ét(Aη̄,0,Ql) = 0 ,

whence Aη̄,0 = 0. In the second case

ζ ′Ql
: H1

ét(Aη̄,0,Ql(1− p))→ H1
ét(Aη̄,1,Ql(1− p))

is an isomorphism, whence Aη̄,0 = Aη̄,1.

Let now

D

be the discriminant variety of X in Pm∨, and let

T = Pm∨ r D

be the complement to D in Pm∨. Let

HT → T

be the pull-back of the projection

p2 : H → Pm∨

with respect to the embedding of T into Pm∨.

Recall that Y → X is the pull-back of the projection p1 : H → Pm with

respect to the embedding of X into Pm and f : Y → Pm∨ is the composition of

the closed embedding of Y into H with the projection p2.

For any closed point

t ∈ Pm∨

let

Yt
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be the fibre of the morphism f , i.e. the intersection of the corresponding hyper-

plane Ht with X . Let also

YT

be the fibred product of Y and HT over the universal hyperplane H , and let

fT : YT → T be the induced projection.

Let

S ⊂ T

be a Zariski open affine subset in T and let

U ⊂ U

be the c-open subset in S constructed exactly as in Section 4.4.

In other words, we define U by removing the images of the pull-backs of

all closed embeddings into the model S0 of S defined over the minimal field of

definition of S.

Then U is a c-open subset in T , and in the dual projective space (Pm)∨, such
that, if

ξ

is the generic point of the projective space Pm∨ and ξ̄ the corresponding geometric

generic point, for any closed point P ∈ U one has the isomorphism κP between

YP and Yξ̄, and for any two closed points P and P ′ in U one has the scheme-

theoretic isomorphism κPP ′ between YP and YP ′ , constructed in Section 4.4.

In what follows we will be also assuming that Assumptions (A) and (B) are

satisfied for the fibres Yη̄ and Yξ̄. In particular, this guarantees that Assumptions

(A) is also satisfied in a family, in the sense of the spreads of Aη̄ and Aξ̄ over

Zariski open subsets in some finite extensions of D or T . Proposition 4.4.5 would

then guarantee that

κt(At,0) = Aξ̄,0

for each close point t in U , and the same for Lefschetz pencils.

Theorem 4.5.2. In the above terms and under the above assumptions, either

Aξ̄,0 = 0, in which case AP,0 = 0 for each closed point P in U , or Aξ̄,0 = Aξ̄,1, so

that AP,0 = AP,1 for any close point P in U .

Proof. Indeed, let A be a Zariski closed subset in Pm∨, such that for each point

t in the complement to A in Pm∨ the corresponding hyperplane Ht does not

contain X and the scheme-theoretic intersection of X and Ht is either smooth

or contains at most one singular point, which is double point. Let G be the

Grassmannian of lines in Pm∨.

Let us prove that there is a Zariski open subset W in the Grassmannian

G, such that for each line D in W the line D does not intersect A and the

corresponding codimension 2 linear subspace in Pm intersects X transversally.
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Indeed, since X inside Pm is a Lefschetz embedding, we have that codimension

of A greater or equal than 2 in Pm∨, so the dimension of A is less than or equal

to m− 2. But suppose that every line intersects A, then the dimension theorem

on the intersection of subvarieties of a projective space says that

dim(A) + 1−m ≥ 0

that implies

dim(A) ≥ m− 1

which is a contradiction. So we have that there exists a line D in Pm∨ such that

the intersection of D with A is empty.

On the other hand there exists a line D in Pm∨ such that the intersection of

the corresponding codimension 2 subspace with X is transversal. This is because

of the fact that, a general hyperplane section intersects X transversally. We need

the following two lemmas.

Lemma 4.5.3. Let V be a family of projective varieties parametrized by a pro-

jective algebraic variety B. Then the following set

{b ∈ B|Vb ∩X ̸= ∅}

is closed.

Proof. To prove this we consider the following diagrams.

Pn ×B

��

// B

��
Pn // Spec(k)

We have the family V embedded inside Pn ×B and it is nothing but

V = {(x, b) ∈ Pn ×B|x ∈ Vb} .

Now consider a Zariski closed subset X of Pn and consider the Cartesian squares

as follows
X ×B

��

// Pn ×B

��
X // Pn

Y

��

// V

��
X ×B // Pn ×B
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It means that Y is the fiber product ofX×B and V over Pn×B, so the underlying

topological space of Y is

{(x, b) ∈ X ×B|x ∈ Vb} = V ∩ (X ×B)

Since X × B and V are closed inside Pn × B, we get that Y is closed. Now

consider the projection

π : Y → B

since it is the composition of

Y → V, V → Pn ×B → B

and each of the above morphisms are proper we get that

π : Y → B

is proper. Therefore we get thatπ(Y ) is closed in B. Now

π(Y ) = {b ∈ B|X ∩ Vb ̸= ∅}

and that is closed.

We apply the above lemma when B is G and X is A to get that all lines in G

intersecting the closed set A forms a Zariski closed subset in G.

Lemma 4.5.4. Let G be the Grassmanian of lines in Pm∨. Consider an ambient

projective variety Y , inside which the codimenison 2 subvarieties corresponding

to the lines in G and X intersect. Then the set of all lines which intersect X

non-transversally in Y is a closed set in G.

Proof. Consider the following set

C = {([a0 : · · · : am], ([b0 : · · · : bm], [c0 : · · · : cm])) ∈X ×G

|TP (L1 ∩ L2) + TPX ⊂ TPY }

here P is the point [a0 : · · · : am] and L1, L2 denote the hyperplanes corresponding

to the points [b0 : · · · : bm], [c0 : · · · : cm] respectively.
We claim that this set is Zariski closed. For that we write down the equations

of the codimension 2 subspace L1 ∩ L2 corresponding to the line in Pm∨. A

codimension 2 linear subspace in Y is defined by
∑

i bixi = 0 and
∑

j cjxj = 0.

Let the equation of X and Y be

f1 = · · · = fl = 0

and

g1 = · · · = gk = 0
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respectively. Then the tangent space at [a0 : · · · : am] is given by∑
i

bixi = 0,
∑
j

cjxj = 0 ,

∑
i

∂fr
∂xi

(ai)(xi − ai) = 0

for r = 1, · · · , l and ∑
i

∂gs
∂xi

(ai)(xi − ai) = 0

for s = 1, · · · , k to L1 ∩ L2,X ,Y at [a0 : · · · : am] respectively. Now consider

the condition, that is

TP (L1 ∩ L2) + TPX ⊂ TPY

this is given by the following equations. First write∑
i

(bi − ci)xi = 0

assume that b0 − c0 ̸= 0, that gives us

x0 = −
∑

i̸=0(bi − ci)xi
b0 − c0

and from the equation of the tangent space of X we get (y0, · · · , ym) such that

(y0, · · · , ym) satisfies the equations of the tangent space to X at [a0 : · · · : am].
Then by the condition we have that

(x0 + y0, · · · , xm + ym) ∈ TPY .

Now put the value of x0 that is given above in the equation of TPY . Then we

have the equation defining a Zariski closed subspace in some projective space. So

the set C defined above is a Zariski closed set in some projective space. Consider

the projection π from C to G, this is a closed set, since the projection π is proper.

So π(C) is a closed set that parametrizes all lines such that the corresponding

codimension two subspace intersects X non-transversally in Y . Therefore the

complement to π(C) gives us all lines in G parametrizing the lines such that the

corresponding codimension 2 linear subspace intersects X transversally.

Applying the above two lemmas (Lemma 4.5.4 being applied to the case when

Y = Pm) we get that the set of linesW in G, such that the lines does not intersect

A and the corresponding codimension 2 subspace intersect X transversally in Pm

is a non-empty Zariski open subset of G. In other words, any line D from W

gives rise to a Lefschetz pencil on X .

Let Z be the complement to the above c-open subset U in Pm∨. Then Z is the

union of a countable collection of Zariski closed irreducible subsets in Pm∨, each
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of which is irreducible. In particular, Z is c-closed. Let us show that it implies

that the condition for a line D ∈ G to be not a subset in Z is c-open.

For that we write Z as ∪Zi. Now since a line D is irreducible, D ⊂ Z is

equivalent to the fact that D is a subset of Zi for some i. Now we want to prove

that the set of lines D in G, such that D is a subset of Zi is closed. For that we

consider the following subset C of

Pm∨ ×G

consisting of pairs (t,D) such that t ∈ D implies that t ∈ Zi. Now we will prove

that this set is Zariski closed. Considering the projection from C to the second

factor we get the set of lines D such that D is a subset of Zi, since the projection

map is closed, this set will be closed. Now since considering a line D in Pm, it is
given by m− 1 linear forms

L0 = L2 = · · · = Lm−2 = 0

where Li is given by the equation∑
j

aijxj = 0

and the linear forms are linearly independent. where [x0 : · · · : xm] is a co-ordinate
system in Pm. Now a point t = [t0 : · · · : tm] belongs to D means that it satisfies

the equations of D, that is ∑
j

aijtj = 0

this can be written as a matrix equation. Since L1, · · · , Lm−2 are linearly inde-

pendent we can write the above equations as

m−2∑
j=0

aijtj = aim−1tm−1 + aimtm

and consider the matrix A = (aij) where i, j = 0, · · · ,m − 2, A is invertible.

Therefore we can write

tj = A−1(aim−1tm−1 + aimtm)

that is

tj = bjtm−1 + bj+1tm

for each j = 0, · · · ,m − 2. Now substituting tj as above in the equation of Zi
we get the equations of C, hence C is Zariski closed. Therefore considering the

second co-ordinate projection we get that the set of lines D such that D ⊂ Zi is

Zariski closed. Therefore the set of lines D in G such that D is not a subset of Z

is c-open.

The following lemma is simple but useful.
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Lemma 4.5.5. Let U1, U2 be two non-empty c-open subsets in an irreducible

quasi-projective variety X. Then U1 ∩ U2 is non-empty.

Proof. Suppose if possible U1 ∩U2 = ∅ for two c-open sets U1, U2. We write X as

X r ∅, that can be written as X r (U1∩U2) that is same as (X rU1)∪ (XrU2).

Now X rUi is a countable union of Zariski closed subsets in X, each of which is

not the whole of X. Then the above union (X r U1) ∪ (X r U2) is a countable

union of Zariski closed subsets in X each of which is not the whole of X. Since

the ground field k is uncountable, this contradicts Lemma 4.2.1.

By Lemma 4.5.5, the intersection of the corresponding c-open subset in G with

W is non-empty, so that we can choose a line D, such that D gives a Lefschetz

pencil

fD : YD → D

and

D ∩ U ̸= ∅ .

By the same lemma, the intersection of the two c-open subsets D ∩U and UD in

the line D is nonempty,

D ∩ U ∩ UD ̸= ∅ .

Let now P0 be a point in D ∩ U and let η̄ be the geometric generic point of

D. By Proposition 4.5.1, either Aη̄,0 = 0 or Aη̄,0 = Aη̄,1.

Suppose Aη̄,0 = 0. Proposition 4.4.5, being applied to the pencil fD, gives that

AP0,0 = 0. Applying the same proposition to the family f : Y → Pm∨ we obtain

that Aξ̄,0 = 0 and so for each closed point P in U the abelian variety AP,0 is zero.

Similarly, if Aη̄,0 = Aη̄,1 then, by Proposition 4.4.5 and Remark 4.4.6 applied to

fD we obtain that AP0,0 = AP0,1. Applying Proposition 4.4.5 and Remark 4.4.6

to the family f we see that

Aξ̄,0 = Aξ̄,1

and

AP,0 = AP,1

for each closed point P in U .

4.6 The constructibility result for cycles on hy-

perplane section

We keep the notation and assumptions of the previous section. Also we shall keep

assuming that p is either 1 or 2, i.e. X is either a surface or a fourfold in Pm,
so that Proposition 4.5.1 works. Recall that T is a Zariski open subset in Pm∨,

such that Yt is smooth for each closed point t ∈ T . Suppose that Assumptions

(A) and (B) hold for the geometric generic fibre Yξ̄. Removing a finite number of
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Zariski closed subsets from T if necessary, we may assume that the assumptions

hold for each closed point t in T .

Let

T ♮

be the set of closed points in T such that

t ∈ T ♮ ⇔ At,0 = At,1 .

For simplicity, in this section we assume that

H2p+1
ét (X ,Ql) = 0 .

This gives that At,1 = At for each closed point t in T , so that

t ∈ T ♮ ⇔ rt∗ = 0 .

where rt∗ is, as usual, the proper push-forward from Ap(Yt) to A
p+1(X ). Since

the group Ap(Yξ̄) is weakly representable, we can choose a smooth projective

curve C over ξ̄ and an appropriate algebraic cycle Z on C × Yξ̄, such that the

induced homomorphism Z∗ from A1(C) to Ap(Yξ̄) is surjective. Then the homo-

morphism θpd from Cp
d,d(Yξ̄) to Ap(Yξ̄) is surjective, where d is the genus of the

curve C (see the proof of Proposition 4.2.4). Shrinking T further we may assume

that the homomorphism θpd from Cp
d,d(Yt) to Ap(Yt) is surjective for each close

point t in the Zariski open subset T of the dual space Pm∨.

Proposition 4.6.1. Under the above assumptions, the set T ♮ is constructible.

Proof. Consider the set

V = {(Z, t) ∈ C p+1
d (X )× Pm∨ | Z ⊂ Ht} ,

where Z ⊂ Ht means that the codimension p + 1 algebraic cycle Z of degree d

on X is supported on the hyperplane section Yt = X ∩Ht for t in Pm∨. Let us

prove that V is Zariski closed. For that we use the Cartesian squares

V0

��

**''
Cd,p−1(Pm)× Pm∨

��

// Pm∨

��
Cd,p−1(Pm) // Spec(k)
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and
V

��

// V0

��
Cd,p−1(X ) // Cd,p−1(Pm)

Here Cd,p−1(X ) stands for the Chow variety parametrizing the dimension

p− 1, degree d algebraic cycles on X , and V0 is defined as

{(Z, t) ∈ Cd,p−1(Pm)× Pm∨|Z ⊂ Ht}

where Z ⊂ Ht means that the support of Z is contained in Ht.

So from this two diagrams it is clear that V is the Cartesian square of the

incidence subvariety V0 and Cd,p−1(X ) over Cd,p−1(Pm). Since we know that the

Cartesian product of two closed subschemes is closed, so V will be closed once

we prove that V0 is closed.

Therefore our aim is to prove that V0 is closed. Let [x0 : · · · : xm] be a point in

∪iVi, since ∪iVi is a subset of Ht we have that [x0 : · · · : xm] satisfies the equation
of Ht. So we write out the equation of the hyperplane Ht corresponding to t, that

is given by the co-ordinates [t0 : · · · : tm], and the equation of the hyperplane is∑
i

t0x0 = 0 .

From this we can write

x0 =
−
∑

i̸=0 tixi

t0
.

Let fZ1 = · · · = fZk = 0 be the equations of the support of an algebraic cycle

Z of dimension p− 1 and of degree d. Then we have

fZ1 ([x0 : · · · : xm]) = · · · = fZk [x0 : · · · : xm] = 0 .

Substituting the value of x0 in the above equations of ∪jVj, we get that

fZ1

([−∑i ̸=0 tixi

t0
: · · · : xm

])
= · · · = fZk

([−∑i̸=0 tixi

t0
: · · · : xm

])
= 0

which is same as saying that

fZ1

([
−
∑
i̸=0

tixi : t0x1 : · · · : t0xm

])
= · · · = fZk

([
−
∑
i̸=0

tixi : t0x1 : · · · : t0xm

])
= 0 .

So we get a system of equations defining V0, this proves that it is a Zariski closed

subset in Cd,p−1(Pm) × Pm∨. This proves that V is a Zariski closed susbet in

Cd,p−1(X )× Pm∨.
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Let vT : VT → T be the corresponding pull-back of the projection to Pm∨

with respect to the inclusion of T into Pm∨.

We have a natural morphism from V0 to Pm∨ and also we have the embedding

of T in Pm∨. So we can form the fibred product

V0T

��

// T

��
V0

// Pm∨

and the fibred product

VT

��

// V0T

��
V // V0

Composing the above two diagrams we get the fiber square

VT

��

// T

��
V // Pm∨

The morphism VT → T is denoted as vT and the composition

VT → V → Cd,p−1(X )

is denoted as sT . In terms of codimension, sT is the morphism from VT to

Cp+1
d,d (X ).

Now we have the following Cartesian square

VT

��

// Cd,p−1(X )

��
Cd,p−1(X ) // Spec(k)

that gives us a unique morphism from VT to Cd,p−1(X ) × Cd,p−1(X ), therefore

composing this morphism with VT × VT to VT we get the morphism s2T . If V 2
T is

the 2-fold fibred product of VT over T , and we then consider the corresponding
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morphisms v2T from V 2
T to T and, as above, s2T from V 2

T to Cp+1
d,d (X ), we obtain

the diagram

V 2
T

v2T

��

s2T // Cp+1
d,d (X )

θp+1
d // Ap+1(X )

T

(4.8)

By Corollary 4.1.2 we have that (θp+1
d )−1(0) is the union of a countable collec-

tion of irreducible Zariski closed subsets in Cp+1
d,d (X ), say (θp+1

d )−1(0) = ∪i∈IZi.
Let Wi = (s2T )

−1(Zi) for each i ∈ I. For any closed point t in T the pre-image

(v2T )
−1(t) is the 2-fold product V 2

t of the fibre Vt of the morphism vT at t over

Spec(k).

Since the homomorphism θpd from Cp
d,d(Yt) to A

p(Yt) is surjective, we obtain

that the condition rt∗ = 0 is equivalent to the condition that the fibre V 2
t of the

morphism v2T at t is a subset of the pre-image ∪i∈IWi of 0 under the composition

θp+1
d ◦s2T . Let us explain this point in more details. By definition the set underlying

the fiber product V 2
t is

{(Z1, Z2)|Z1, Z2 ⊂ Ht}

the morphism s2T is nothing but

(Z1, Z2, t) 7→ (Z1, Z2) .

Suppose that rt∗ = 0, and take (Z1, Z2) in V 2
t . Then Z1, Z2 are supported on Ht.

Now consider the cycle class [Z1 − Z2], then

rt∗[Z1 − Z2] = 0 = θp+1
d ◦ rt∗(Z1, Z2) = 0

by the commutativity of the following diagram.

Cp
d,d(X ∩Ht)

��

rt∗ // Cp+1
d,d (X )

θp+1
d

��
Ap(X ∩Ht)

rt∗ // Ap+1(X )

Therefore it follows that (Z1, Z2) is an element of ∪iWi, so

V 2
t ⊂ ∪iWi .

Now suppose that V 2
t is a subset of ∪iWi, so take an element (Z1, Z2) inside

V 2
t , then it is in Wi for some i. That would imply that (sT (Z1), sT (Z2)) is in

(θp+1
d )−1(0). So we get that

[sT (Z1)− sT (Z2)] = 0
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that is same as saying, by the commutativity of the above diagram that

rt∗[Z1 − Z2] = 0

since θpd is surjective from Cp
d,d(X ∩Ht) to A

p(X ∩Ht) we get that

rt∗ = 0 .

Thus, the condition rt∗ = 0 is equivalent to the condition that the fibre V 2
t

is a subset in the pre-image ∪i∈IWi of 0 under the composition θp+1
d ◦ s2T . By

Lemma 4.2.1, this is equivalent to say that V 2
t is a subset in Wi1 ∪ · · · ∪Win for

a finite collection of indices i1, . . . , in in I.

Lemma 4.6.2. Let V be a family of projective varieties parametrized by a pro-

jective algebraic variety B. Then the following set

{b ∈ B|Vb ⊂ X}

is constructible.

Proof. To prove this we consider the following diagrams.

Pn ×B

��

// B

��
Pn // Spec(k)

We have the family V embedded inside Pn ×B and it is nothing but

V = {(x, b) ∈ Pn ×B|x ∈ Vb} .

Now consider a Zariski closed subset X of Pn and consider the Cartesian squares

X ×B

��

// Pn ×B

��
X // Pn

and
Y

��

// V

��
X ×B // Pn ×B
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It means that Y is the fiber product ofX×B and V over Pn×B, so the underlying

topological space of Y is

{(x, b) ∈ X ×B|x ∈ Vb} = V ∩ (X ×B)

Since X × B and V are closed inside Pn × B, we get that Y is closed. Now

consider the projection

π : Y → B

since it is the composition of

Y → V , V → Pn ×B → B

and each of the above morphisms are proper we get that

π : Y → B

is proper. Therefore we get that π(Y ) is closed in B.

Now

π(Y ) = {b ∈ B|X ∩ Vb ̸= ∅}

and we can describe the set

{b ∈ B|Vb ⊂ X}

as

π(Y ) ∩ (B r π(Y ′))

where

Y ′ = {(x, b) ∈ Z ×B|x ∈ Vb}

and Z is the complement of X in Pn. So we have

π(Y ′) = {b ∈ B|Z ∩ Vb ̸= ∅} .

So arguing as before we prove that π(Y ′) is closed. Now we prove that the set

{b ∈ B|Vb ⊂ X}

is indeed the set

π(Y ) ∩ (B r π(Y ′)) .

So let b ∈ B be in the above intersection, then it means that

Vb ∩X ̸= ∅, Vb ∩ Z = ∅

it means that the intersection of complement of X with Vb is empty so we have

that

Vb ⊂ X .
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Now if Vb ⊂ X then we have Vb ∩ Z = ∅ . Therefore the set

{b ∈ B | Vb ⊂ X}

is constructible.

Now we consider the family V 2 over the base Pm∨ and apply Lemma 4.6.2

with X to be equal to

Wi1 ∪ · · · ∪Win .

Then we get

{t ∈ Pm∨ | V 2
t ⊂ X}

is a constructible set.

We will also need the following lemma.

Lemma 4.6.3. Let V be an irreducible quasi-projective variety over k, and let U

be a nonempty c-open subset in V . Then the Zariski closure of U in V is V .

Proof. Indeed, since U is c-open, there exists a countable union Z = ∪i∈IZi of
Zariski closed irreducible subsets in V , such that U = V rZ. Then Ū is nothing

but the complement to the interior Int(Z) of the set Z in V . Assume that that

Int(Z) is nonempty. Then there exists a nonempty subset W in Int(Z), which is

Zariski open in V . By Lemma 4.2.1, there exists an index i0 ∈ I, such that W is

contained in Zi0 . This gives that Int(Zi0) of the set Zi0 is nonempty. This is not

possible as Zi0 is a closed proper subset in a Zariski topological space.

4.7 The Gysin hyperplane section map on Chow

groups

Recall that we assume that Assumption (A) is satisfied in a family for the fibres

of the morphism fT : YT → T , in the sense of Section 4.4. The main result of the

thesis is the following theorem, see [4].

Theorem 4.7.1. Assume, in addition, that, if Yt has one ordinary double point,

the group Ap(Ỹt) is weakly representable, where Ỹt is a resolution of Yt, the group

Ap+1(Yt) is weakly representable for each nonsingular Yt and A
p+1(X ) is not ra-

tionally weakly representable. Then the kernel of the push-forward homomorphism

from Ap(Yt) to A
p+1(X ) is countable for each t of the c-open subset U in Pm∨.

Proof. The proof of this theorem is somewhat long and occupies the rest of this

section. As the proof is long we divide it into many steps.

By Theorem 4.5.2, we have that, either Aξ̄,0 = 0 or Aξ̄,0 = Aξ̄. Suppose the

latest. By the same Theorem 4.5.2, At,0 = At for each closed point t in the c-

open subset U in T . On the other hand, U is a subset in T ♮, and the set T ♮ is
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constructible by Proposition 4.6.1. With this assumption in hand let’s first show

that At,0 = At for all t in a Zariski open subset of T .

Step I :

Represent U as the complement to the countable union ∪i∈IDi of irreducible

Zariski closed subsets Di in T . Also we write T ♮ as the countable union ∪j∈JT ♮j ,
where T ♮j is Zariski open in an irreducible Zariski closed subset Zj in T .

Let Z be the union ∪j∈JZj and let W be the complement to Z in T . Note

that W is c-open in T and W ∩ U = ∅. The intersection of W and U is the

complement to the union of all Di and Zj, i ∈ I, j ∈ J , in T . As U ̸= ∅, it follows
that Di ̸= T for each index i. Since W ∩ U = ∅, by Lemma 4.2.1, there must

exist an index j0 ∈ J , such that

Zj0 = T .

This gives us At,0 = At, i.e. rt∗ = 0, for each closed point t in the nonempty

Zariski open subset T ♮j0 in T .

By Lemma 4.6.3, the intersection of T ♮ with U is nonempty. Let fD : YD → D

be a Lefschetz pencil for X , such that the set-theoretic intersection of the line

D = P1 with the set T ♮ ∩ U is nonempty. By using the fact that, the group

Ap+1(Yt) is weakly representable for each t ∈ T and D passes through U , it

follows that the group Ap+1(Yη̄) is weakly representable too. This we prove in

detail. This consists of step II.

Step II :

Indeed, let D be a Lefschetz pencil such that D ∩ U is non-empty. Let UD
be the c-open subset of D consisting of closed points t of D, such that Yt

∼= Yη̄,

where the isomorphism is over η̄ and η̄ is the geometric generic point of D. Since

D ∩U is c-open in D and UD is c-open in D we have D ∩U ∩UD ̸= ∅. Therefore
for a closed point t in the above intersection, we have

Yt
∼= Yη̄ .

Note that for any closed point t in T , Ap+1(Yt) is weakly representable. Now we

have to prove that Ap+1(Yη̄) is weakly representable. So we choose a point t in

D∩U ∩UD, so that Yt and Yη̄ are isomorphic as schemes over η̄. So we have the

following fiber square.
Yη̄

��

// η̄

��
Yt

// Spec(k)
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Since Ap+1(Yt) is weakly representable, there exists a smooth projective curve Γt,

and an algebraic cycle Zt supported on Γt×Yt such that the homomorphism Zt∗
from A1(Γt) to A

p+1(Yt) is onto.

Since for each closed point t in the c-open set U we have the scheme-theoretical

isomorphism between Yt and Yη̄, the group A
p+1(Yη̄) is also weakly representable,

and we can chose a nonsingular projective curve Γη̄ and an algebraic cycle Z on

Γη̄ ×η̄ Yη̄, such that Γt and Zt will be specializations of Γη̄ and Zη̄ at t. Let t be

in the c-open set U , then the following diagram will be commutative

Γη̄

��

// η̄

��
Γt // Spec(k)

and let the correspondence Zη̄ supported on Γη̄×Yη̄ be defined to be the pullback

of Zt under the isomorphism

κ : Γη̄ × Yη̄ → Γt × Yt .

We denote the isomorphism from Γη̄ to Γt by κ1 and the isomorphism from Yη̄ to

Yt as κ2. Having this, we have to prove that the homomorphism Zη̄∗ from A1(Γη̄)

to Ap+1(Yη̄) is onto. To do that, we prove the following diagram is commutative.

A1(Γt)

κ1∗

��

Zt∗ // Ap+1(Yt)

κ∗
2

��
A1(Γη̄)

Zη̄∗ // Ap+1(Yη̄)

That is

κ∗
2 ◦ Zt∗ = Zη̄∗ ◦ κ∗

1 .

So we write out the formula for

Zη̄∗ ◦ κ∗
1(z) = (prYη̄∗(Zη̄ · pr

∗
Γη̄
◦ κ∗

1(z)))

and consider the following commutative diagram.

Γη̄ × Yη̄

κ

��

prΓη̄ // Γη̄

κ1

��
Γt × Yt

prΓt // Γt
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This gives

pr∗Γη̄
◦ κ∗

1 = κ∗ ◦ pr∗Γt
,

and hence we can conclude from the above that

Zη̄∗ ◦ κ∗
1(z) = (prYη̄∗(Zη̄ · κ

∗ ◦ pr∗Γt
(z)) .

This right hand side in the above expression is equal to

(prYη̄∗(κ
∗(Zt) · κ∗ ◦ pr∗Γt

(z)) .

Since κ∗ is a group homomorphism we have that the above is equal to

prYη̄∗ ◦ κ
∗(Zt · pr∗Γt

(z)) .

Let us consider the following fiber square

Γη̄ × Yη̄

κ

��

prYη̄ // Yη̄

κ2

��
Γt × Yt

prYt // Yt

where κ is flat and prYη̄
is proper. By the well-known property of algebraic cycles

(see Proposition 1.7 on page 18 in [13] or Section 2 above) we have that

prYη̄∗ ◦ κ
∗ = κ∗

2 ◦ prYt∗ .

Thus we have

Zη̄∗ ◦ κ∗
1 = κ∗

2 ◦ Zt∗ ,

and therefore the diagram

A1(Γt)

κ1∗

��

Zt∗ // Ap+1(Yt)

κ∗
2

��
A1(Γη̄)

Zη̄∗ // Ap+1(Yη̄)

is commutative, and observing that the vertical homomorphisms are isomor-

phisms and the top horizontal morphism is onto, weget Zη̄∗ is onto. So the

group Ap+1(Yη̄) is weakly representable.

The third step consists of spreading out Γη̄ and Zη̄ and the effects of this

spreading on the Chow groups.

Step III :
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Let D′ be a finite extension of the curve D, such that both Γη̄ and Zη̄ are

defined over the function field k(D′). Spreading out the curve Γη̄ and the cycle

Zη̄ we obtain a relative curve

G → V ′

and a relative cycle

Z

on G ×V ′ YV ′ over the preimage V ′ of a certain Zariski open subset V in D under

the map D′ → D.

We also obtain a homomorphism

Z∗ : A
1(G )→ Ap+1(YV ′) ,

such that, by definition,

Z∗(a) = prYV ′∗(Z · pr
∗
G (z)) .

To be more precise, to check whether the homomorphism Z is well defined

we have to check that the morphism is proper or not. Since proper morphisms

are stable under base change. It is enough to show that the morphism G → V ′

is proper. Now consider the morphism V ′ → D′, being an open immersion, it is

separated.

Consider the composition

G → V ′ → D′ .

We want to prove that the morphism G → D′ is proper. Since Gη̄ is the smooth

projective curve Γη̄, we get that the morphism G to D′ is locally projective,

hence it is proper. On the other hand the open immersion V ′ → D′ is separated,

therefore we get that the morphism G → V ′ is proper. So we can indeed define

the homomorphism Z∗.

Next, compactifying and resolving singularities, we obtain a surface G ′, a codi-

mension 1 algebraic cycle Z ′ on the variety G ′ ×D′ YD′ and the homomorphism

Z ′
∗ from A1(G ′) to Ap+1(YD′). Notice that the following diagram is commutative:

A1(G ′)

f∗

��

Z ′
∗ // Ap+1(YD′)

g∗

��
A1(G ′

η′)
Z ′

η′∗ // Ap+1(Yη′)

(4.9)

where G ′
η′ is Γη′ . Indeed, take a in A1(G ′). Then g∗Z ′

∗ (a) is by definition equal

to

g∗(prYD′∗
(Z ′ · pr∗G ′(a))) .
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Consider the fiber square

Yη′ × G ′
η′

prYη′

��

g×f // YD′ × G ′

prYD′

��
Yη′

g // YD′

The morphism prYD′ is proper and g×f is flat. Therefore by the formula present

on page 9, we obtain

g∗ ◦ prYD′ ∗
= prYη′∗ ◦ (g × f)

∗ .

It follows from the above formula that

g∗(prYD′∗
(Z ′ · pr∗G ′(a)))

is equal to

prYη′∗ ◦ (g × f)
∗(Z ′ · pr∗G ′(a)) .

Since (g × f)∗ is a ring homomorphism, the above is same as

prYη′∗((g × f)
∗(Z ′) · (g × f)∗pr∗G ′(a)) .

Now on one hand we have

(g × f)∗(Z ′) = [Z ′
η′ ] ,

on the other hand we have

(g × f)∗pr∗G ′(a) = f ∗(a) .

Simplifying the above expression we get that

g∗ ◦Z ′
∗ (a) = Zη′∗ ◦ f ∗(a) .

Thus, the diagram (4.9) is commutative. Since G ′
η′ is nothing but Γη′ , we can

also re-write it as

A1(Γη′) // Ap+1(Yη′)

A1(G ′)

OO

// Ap+1(YD′)

OO

(4.10)
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Consider also the obvious commutative diagram

A1(Γη̄) // Ap+1(Yη̄)

A1(Γη′)

OO

// Ap+1(Yη′)

OO

Now we come to step IV, in which we understand the group Ap+1(Y ′
D).

Step IV:

For that consider the following homomorphism

Ap+1(YD′)→ Ap+1(Yη′)→ Ap+1(Yη̄) ,

under the above homomorphism, an element α goes to α′ and that is mapped to

ᾱ,

α 7→ α′ 7→ ᾱ .

The homomorphism Zη̄∗ is onto, so there exists β̄ such that

Zη̄∗(β̄) = ᾱ

Now consider a finite extension L of k(γη′) such that the cycle β̄ is defined

over L and we have the following commutative triangle,

A1(Γη′) //

##G
GG

GG
GG

GG
GG

GG
GG

GG
GG

A1(Γη′′)

��
A1(Γη̄)

where

Γη′′ = Γη′ ×k(Γη′ )
Spec(L) .

On the other hand we have the homomorphism

A1(Γη′′)→ A1(Γη̄) .

Since β̄ is defined over Γη′′ , there exists β′′ that is mapped to β̄ under the above

homomorphism. At the same time consider β′ to be the image of β′′ under the

homomorphism

A1(Γη′′)→ A1(Γη′)
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which is the push-forward corresponding to the projection

Γη′′ → Γη′ .

Now let β′′ be mapped to γ′′ under the morphism

A1(Γη′′)→ Ap+1(Yη′′) .

Since the homomorphism A1(G ′) → A1(Γη′) is surjective there exists β in

A1(G ′) such that it is mapped to β′ in A1(Γη′). Let β′ be mapped to γ′, and β

mapped to γ under the homomorphisms

A1(Γη′)→ AP+1(Yη′)

and

A1(G ′)→ Ap+1(YD′) .

Let us show that γ − nαα belongs to the kernel of the homomorphism

Ap+1(YD′)→ Ap+1(Yη̄) ,

for some positive integer nα. For that we observe that γ is mapped to γ′ and β′

is mapped to γ′,

β′ 7→ γ′, γ 7→ γ′ .

Considering the following commutative square

A1(Γη′′) //

��

Ap+1(Yη′′)

��
A1(Γη′) // Ap+1(Yη′)

we get that γ′′ is mapped to γ′ under the push-forward from Ap+1(Yη′′) to

Ap+1(Yη′). Therefore γ
′ is mapped to N(γ′′) and nα′ is mapped to nα′′ under the

pull-back from Ap+1(Yη′) to A
p+1(Yη′′), where α

′′ is constructed as follows.

Consider the following commutative triangle

Ap+1(Yη′) //

$$J
JJ

JJ
JJ

JJ
JJ

JJ
JJ

JJ
JJ

J
Ap+1(Yη′′)

��
Ap+1(Yη̄)

Let α′′ be the element of Ap+1(Yη′′), that is mapped to ᾱ and the commutativ-

ity of the above triangle tells us that α′ is mapped to α′′ under the pull-back

homomorphism

Ap+1(Yη′)→ Ap+1(Yη′′) .
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Considering the following commutative square

A1(Γη̄) // Ap+1(Yη̄)

A1(Γη′′)

OO

// Ap+1(Yη′′)

OO

we obtain that both γ′′ and α′′ are mapped to ᾱ.

Therefore γ′′ − α′′ is a torsion by Lemma 3 in Appendix to Chapter 1 in [7].

Hence there exists an integer m such that

m(γ′′ − α′′) = 0 .

Therefore it follows that

m(N(γ′′)−N(α′′)) = 0

and N(α′′) = nα′′. Thus we have

mnα′′ = mN(γ′′) .

Therefore mnα′′ and mN(γ′′) are mapped to the same element mnᾱ under the

homomorphism

Ap+1(Yη′′)→ Ap+1(Yη̄) .

This enforces

mγ −mnα

to be in the kernel of

Ap+1(YD′)→ Ap+1(Yη̄) .

So taking mγ to be γ and mn to be equal to nα we get that γ − nαα is in the

kernel of

Ap+1(YD′)→ Ap+1(Yη̄) .

Therefore we have

nαα = γ + δ

where δ belongs to the kernel of the homomorphism

Ap+1(YD′)→ Ap+1(Yη̄) .

Let us now prove that the kernel of the pullback

Ap+1(YD′)⊗Q→ Ap+1(Yη̄)⊗Q

is weakly representable. This is the step V.
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Step V :

For that we observe that the homomorphism

Ap+1(Yη′)⊗Q→ Ap+1(Yη̄)⊗Q

is injective, so the kernel of the pullback

Ap+1(YD′)⊗Q→ Ap+1(Yη̄)⊗Q

coincides with the kernel of

Ap+1(YD′)⊗Q→ Ap+1(Yη′)⊗Q .

Since CH p+1(Yη′) ⊗ Q is the colimit of the groups CH p+1(YW ′) ⊗ Q, where

W ′ runs over all Zariski open subsets of D′, by the localization exact sequence it

follows that the kernel

Ap+1(YD′)⊗Q→ Ap+1(Yη′)⊗Q

is generated by the image of the homomorphisms rt′∗ from ⊕t′∈D′Ap(Yt′)⊗Q to

Ap+1(YD′)⊗Q.

Let us prove it in more detail for the above groups with Z coefficients. The

proof for the groups with Q coefficients will be the same.

Consider the following commutative diagram.

Ap+1(YD′)

��

// Ap+1(Yη′)

r

��
CH p+1(YD′) // CH p+1(Yη′)

Suppose we take a in the kernel of

Ap+1(YD′)→ Ap+1(Yη′) .

Then it follows from the above commutative diagram that the image of a under

the homomorphism

i : Ap+1(YD′)→ CH p+1(YD′)

is in the kernel of

CH p+1(YD′)→ CH p+1(Yη′) .

Using the fact that CH p+1(Yη′) is the colimit of the groups CH p+1(YW ′),

where W ′ is Zariski open in D′, we get that the cycle a restricted on YW ′ , is zero.

That is i(a) is in the kernel of the pullback homomorphism

CH p+1(YD′)→ CH p+1(YW ′) .
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Since pullback preserves algebraic equivalence and we have the commutative

diagram

Ap+1(YD′)

��

// Ap+1(YW ′)

r

��
CH p+1(YD′) // CH p+1(YW ′)

we get that a is in the kernel of the homomorphism

Ap+1(YD′)→ Ap+1(YW ′) .

The localization exact sequence tells us that, a belongs to the image of

⊕t′∈D′rW ′ : Ap(Yt′)→ Ap+1(YD′) .

Consequently, the kernel of

Ap+1(YD′)→ Ap+1(Yη′)

is generated by the image of the homomorphism from ⊕t′∈D′Ap(Yt′) to A
p+1(YD′).

As rt∗ = 0 for all but finitely many t in D, it follows that rt′∗ = 0 for all but

finitely many t′ in D′. The group Ap(Yt)⊗Q is weakly representable for all t ∈ T
and also Ap(Ỹt)⊗Q is weakly representable for all t such that Yt is singular. So

we get that the the kernel of the homomorphism

Ap+1(YD′)⊗Q→ Ap+1(Yη′)⊗Q

is weakly representable.

We proved that for any α in Ap+1(YD′), there exists nα such that nαα belongs

to the subgroup of Ap+1(YD′) generated by the image of Z ′
∗ and the kernel of the

pullback Ap+1(YD′)→ Ap+1(Yη̄).

Denote this subgroup by B. Tensoring with Q we get that B ⊗ Q is weakly

representable.

From the above it follows that for any α in Ap+1(YD′) ⊗ Q, there exists nα
such that nαα is in B⊗Q. Observe that the group B⊗Q is divisible. Therefore

we get that there exists b in B ⊗Q, such that

nαb = nαα

or

nα(b− α) = 0 .

Put

α = b− c ,
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where c = b− α and nαc = 0. Since we are working with Q coefficients it follows

that

c = 0 ,

and we have

b = α .

Since b belongs to B ⊗Q, we have that Ap+1(YD′)⊗Q is a subgroup of B ⊗Q,

hence it is equal to B ⊗Q. Therefore, Ap+1(YD′)⊗Q is weakly representable.

Thus, we have got that Ap+1(YD′) is rationally weakly representable. Let us

now show that it implies that Ap+1(X ) is rationally weakly representable, which

is the step VI.

Step VI :

Let f be the blow-up morphism from YD′ to X . By proposition 6.7 b) in

[13] we get that f∗ is surjective. By the weak representability of Ap+1(YD′) it

follows that, there exists a smooth projective curve Σ and an algebraic cycle Z

supported on Σ×YD′ such that the homomorphism Z∗ from A1(Σ) to Ap+1(YD′)

is onto. Let us show that there exists an algebraic cycle Z ′ supported on Σ×X

such that Z ′
∗ from A1(Σ) to Ap+1(X ) is onto. Since f is a proper morphism we

can consider Z ′ = (id × f)∗(Z). Now we will prove that the homomorphism Z ′
∗

is onto. For that we want to show that the diagram

A1(Σ)

id

��

Z∗ // Ap+1(YD′)

f∗

��
A1(Σ)

Z′
∗ // Ap+1(X )

is commutative. So we write

f∗Z∗(a) = f∗prYD′∗(Z · pr
∗
Σ(a)) ,

and consider the following diagram

Σ× YD′

��

// YD′

��
Σ×X // X

It gives us that

f∗ ◦ prYD′∗ = prX ∗ ◦ (id× f∗) .
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Putting this in the above formula we get that

f∗Z∗(a) = prX ∗ ◦ (id× f∗)(Z · pr∗YD′ ,Σ(a))

where pr∗YD′ ,Σ is the pullback corresponding to the projection

Σ× YD′ → Σ .

So we are left with proving

prX ∗ ◦ (id× f∗)(Z · pr∗YD′ ,Σ(a))

is equal to

prX ∗(Z
′ · pr∗X ,Σ(a)) .

This is because of the following. Consider Z to be an irreducible subvariety V

inside Σ×YD′ . Then V ·pr∗YD′ ,Σ(a) is nothing but the cycle class of the algebraic

cycle associated to

V ∩ (a× YD′)

and

(id× f)(V ∩ (a× YD′)) = (id× f)(V ) ∩ (a×X ) .

Therefore we achieve that

(id× f)∗(Z · pr∗YD′ ,Σ(a)) = Z ′ · pr∗X ,Σ(a) ,

and hence the diagram

A1(Σ)

id

��

Z∗ // Ap+1(YD′)

f∗

��
A1(Σ)

Z′
∗ // Ap+1(X )

is commutative. The homomorphism f∗ is surjective. The homomorphism Z∗⊗Q
are is surjective because the group Ap+1(YD′) is rationally weakly representable.

This gives that Z ′
∗ ⊗ Q is surjective, and so Ap+1(X ) is rationally weakly rep-

resentable. This contradicts to the third assumption of the theorem. Hence,

Aξ̄,0 = 0, and Theorem 4.5.2 finishes the proof.

4.8 Applications to nonsingular cubic fourfolds

in P5

In this last section we consider concrete examples of applications of the above

Theorem 4.7.1.
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Let us first start with surfaces. A typical example would be the case of K3-

surfaces over k. So, let X be a K3-surface embedded into Pm. Since hyperplane
sections of a surface are curves, Assumptions (A) and (B) are satisfied. Passing

to finite extension T ′ of T we get a section of the morphism YT ′ → T ′, which gives

that Assumption (A) is satisfied in a family, for YT over T . The third cohomology

of a K3-surface vanishes and A2(X ) is not representable by Mumford’s result in

[24]. By Theorem 4.7.1, for a very general hyperplane section Yt of the surface

X the kernel of the push-forward homomorphism rt∗ from A1(Yt) to A
2(X ) is

countable. It means that, for a fixed point Pt in Yt, there exists only a countable

set of points on the fibre Yt, which are rationally equivalent to Pt on the surface

X . This is a particular case of Proposition 2.4 in [42].

Let us now consider the main case when X is a nonsingular cubic hypersurface

in P5. It is known that the group CH3(X ) is generated by lines, see [33]. It

follows that A3(X ) is generated by differences of linear combinations of line

of the same degree. Theorem 4.7.1 tells us something about when two linear

combinations of lines of same degree are rationally equivalent to each other.

Let us make sure that cubic fourfolds in P5 satisfy all the needed assumptions.

Since X is a hypersurface in P5,

H5
ét(X ,Ql) = 0 ,

so that A1 = A. Any smooth hyperplane section Yt is a cubic 3-fold in Ht ≃ P4,

whose group A2(Yt) is well known to be representable by the corresponding Prym

variety

Pt = Prym(Yt)

with the corresponding regular isomorphism ψ2
t between A2(Yt) and Pt, see [5].

Since the Prym construction is of purely algebraic-geometric nature, we can do

it over ξ̄ getting the Prym variety Pξ̄ and the corresponding regular isomorphism

ψ2
ξ̄
between A2(Yξ̄) and Pξ̄, for the geometric generic fibre Yξ̄. In other words,

Assumption (A) is satisfied for Yξ̄. Let us show that Assumption (A) is actually

satisfied in a family.

Indeed, we can choose a finitely generated field extension L of the field k(T ),

such that the fibre Yξ̄ has a model YL over L, the model YL contains a line Λ,

i.e. the closed embedding of Λ into Yξ̄ is over L, and the Prymian Pξ̄ has a model

PL over L. Then choose an appropriate finite extension T ′ of the scheme T , such

that k(T ′) = L, and spread out PL in to a family of Prymians

P → W ′

whose geometric generic fibre is Pξ̄ and closed fibres Pt′ coincide with Pt if t
′ is a

closed point of W ′ over a closed point t of U . The line Λ spread into a P1-bundle

over W ′. This all gives the consistency of the isomorphisms ψ2
t and ψ2

ξ̄
, in the
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sense that the group-theoretic isomorphisms κt between Pt and Pξ̄ would coincide

with the corresponding scheme-theoretic isomorphism κt between Pt and Pξ̄.
Assumption (B) is satisfied for Yt too. If a hyperplane section Yt of the cubic

fourfold X has one ordinary double point, then the singular cubic Yt is rational,

so that Ỹt is rational. It follows that the group A2(Ỹt) is weakly representable.

If Yt is nonsingular, then it is unirational and so rationally connected. Hence,

A3(Yt) is trivial. The group A3(X ) is not weakly rationally representable by

Theorem 0.5 in [31]. Thus, the assumptions of Theorem 4.7.1 are also satisfied.

By Theorem 4.7.1, for each closed point t in the c-open subset U of Pm∨ there

exists a countable set Ξt of closed points in the Prymian Pt of the hyperplane

section Yt, such that the kernel of the homomorphism rt∗ from Pt to A
3(X ) is

countable. In particular, if Σ and Σ′ are two linear combinations of lines of the

same degree on X , supported on Yt, then Σ is rationally equivalent to Σ′ on X

if and only if the point on Pt, represented by the class of Σ− Σ′, occurs in Ξt.

Thus, we have proven the result announced in the Abstract and Introduction

above.

Notice also that the group A3(Yη) can be non-zero, but we know that it is

torsion. Since A2(Yt) is divisible, any cycle class in A3(X ) is represented, up to

torsion, by line configurations supported on hyperplane sections.
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133



[13] W. Fulton. Intersection theory, volume 2 of Ergebnisse der Mathematik

und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)].

Springer-Verlag, 1984.

[14] S. Gorchinskiy and V. Guletskii. Motives and representability of algebraic

cycles on threefolds over a field. J. Algebraic Geom. 21, no.2, 2012, 347-373.

[15] A. Grothendieck. Revetments Etales et Groupe Fundamental(SGA 1), vol-

ume 224 of Lecture notes in mathematics,Springer, Berlin, Heidelberg,

Newyork. 1971.

[16] A. Grothendieck and J. Dieudonne. Étude cohomologique des faisceaux
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